Constrained Markovian MC for the initial state PDFs *LCWS 2004*

S. Jadach and M. Skrzypek

stanislaw.jadach@ifj.edu.pl

HNINP-PAS, Cracow, Poland

The long standing problem • Markovian MC implementing the QCD/QED evolution equations is basic ingredient in all parton shower type MCs

 Markovian MC implementing the QCD/QED evolution equations is basic ingredient in all parton shower type MCs

 Unconstrained Markovian, with evolution kernels from perturbative QED/QED, can only be used for FSR (inefficient for ISR)

- Markovian MC implementing the QCD/QED evolution equations is basic ingredient in all parton shower type MCs
- Unconstrained Markovian, with evolution kernels from perturbative QED/QED, can only be used for FSR (inefficient for ISR)

 For ISR the *Backward Markovian* of Sjostrand (Phys.Lett. 157B, 1985) is a widely adopted *remedy*.

- Markovian MC implementing the QCD/QED evolution equations is basic ingredient in all parton shower type MCs
- Unconstrained Markovian, with evolution kernels from perturbative QED/QED, can only be used for FSR (inefficient for ISR)
- For ISR the *Backward Markovian* of Sjostrand (Phys.Lett. 157B, 1985) is a widely adopted remedy.
- Backward Markovian does not solve evolution eqs. It merely exploits their solutions coming from the external non-MC methods

- Markovian MC implementing the QCD/QED evolution equations is basic ingredient in all parton shower type MCs
- Unconstrained Markovian, with evolution kernels from perturbative QED/QED, can only be used for FSR (inefficient for ISR)
- For ISR the *Backward Markovian* of Sjostrand (Phys.Lett. 157B, 1985) is a widely adopted *remedy*.
- *Backward Markovian* does not solve evolution eqs. It merely exploits their solutions coming from the *external* non-MC methods

 Is it possible to invent an efficient MC algorithm for constrained Markovian based on *internal* MC solutions of the evolution eqs?

 We have found a class of solutions of the above long-standing problem

- We have found a class of solutions of the above long-standing problem
- Introductory exercise: Markovian MC EvolMC was found to agree with QCDnum16 to within 0.2%, Acta Phys.Polon. B35 (2004) 745

- We have found a class of solutions of the above long-standing problem
- Introductory exercise: Markovian MC EvolMC was found to agree with QCDnum16 to within 0.2%, Acta Phys.Polon. B35 (2004) 745

Recently, 1-st prototype of the efficient constrained Markovian MC (solution IIB) prototyped.
It agrees with the Markovian EvolMC to within 0.2%

- We have found a class of solutions of the above long-standing problem
- Introductory exercise: Markovian MC EvolMC was found to agree with QCDnum16 to within 0.2%, Acta Phys.Polon. B35 (2004) 745
- Recently, 1-st prototype of the efficient *constrained Markovian MC* (solution IIB) prototyped.
 It agrees with the Markovian EvolMC to within 0.2%

 Next step: Prototyping, testing and documenting the entire family of constrained MC algorithms that we see...

- We have found a class of solutions of the above long-standing problem
- Introductory exercise: Markovian MC EvolMC was found to agree with QCDnum16 to within 0.2%, Acta Phys.Polon. B35 (2004) 745
- Recently, 1-st prototype of the efficient *constrained Markovian MC* (solution IIB) prototyped.
 It agrees with the Markovian EvolMC to within 0.2%
- Next step: Prototyping, testing and documenting the entire family of constrained MC algorithms that we see...
- Next-next step: looking for applications in the full scale (4-momenta) parton shower MCs.
 Obvious candidate processes: ISR at ELCs, W/Z at LHC and DIS.

- We have found a class of solutions of the above long-standing problem
- Introductory exercise: Markovian MC EvolMC was found to agree with QCDnum16 to within 0.2%, Acta Phys.Polon. B35 (2004) 745
- Recently, 1-st prototype of the efficient *constrained Markovian MC* (solution IIB) prototyped.
 It agrees with the Markovian EvolMC to within 0.2%
- Next step: Prototyping, testing and documenting the entire family of constrained MC algorithms that we see...
- Next-next step: looking for applications in the full scale (4-momenta) parton shower MCs. Obvious candidate processes: ISR at ELCs, W/Z at LHC and DIS.

Solutions class I and II

Prototype IIB

Replace $D(x_0) \to 1/x_0 = x \prod \frac{1}{z_i}$. Compensated by MC weight. Must generate $P(z_i) = 2C_A(\frac{1}{z_i} + \frac{1}{1-z_i})$ with the constraint $\prod_i z_i \ge x$. Not so trivial! Solution by the multibranching method:

Multibranching in IIB

Leads to sum over branches:

Multibranching in IIB

Leads to sum over branches:

Contributions 1/z and 1/(1-z) are combined and resummed separately.

Multibranching in IIB

Leads to sum over branches:

Contributions 1/z and 1/(1-z) are combined and resummed separately. Worst-case scenario (pure gluon bremsstrahlung) is now prototyped and tested.

Testing prototype IIB

Comparison of IIB solution with the Markovian MC EvolMC for pure gluonstrahlung. Two solutions and the ratio (lower plot). Agreement to within 0.2%

Short term prospects

- More testing of IIB.
- Numerical test of solutions class I (several solutions found, under tests)
- Implementing transitions $Q \to G$ and $G \to Q$ (at least 2 methods found)
- Adding NLL corrections (looks rather trivial)

Most important: NEW AVENUES are opened in the construction of the ISR PARTON SHOWER type MCs