Determination of CP violation from $higgs \rightarrow WW, ZZ$ decays at PLC

Linear Collider Workshop LCWS'2004 Paris, France, April 19-23, 2004

<u>Outline</u>

- Higgs boson production and decays to WW and ZZ at PLC JHEP 0211 (2002) 034 [hep-ph/0207294]
- Weak (indirect) CP violation in SM-like 2HDM (II) at PLC hep-ph/0403138
 Comparison with LHC and LC hep-ph/0404024
 - Direct CP violation in generic model update of hep-ph/0307175

$$\gamma\gamma \rightarrow \mathcal{H} \rightarrow WW, \ ZZ$$

Higgs boson production at the Photon Collider

Production cross section is propor- In SM, dominant contributions to two-photon tional to the two-photon width amplitude A are due to W^{\pm} and top loops.

where:

$$\mathcal{A} = A_W(M_W) + \sum_f N_c Q_f^2 A_f(M_f) + \dots$$

two-photon amplitude

Phases of W^{\pm} and top contributions differ !

Both $\Gamma_{\gamma\gamma}$ and the phase of the amplitude $\phi_{\gamma\gamma}$ depend on Higgs-boson couplings !

$$\gamma\gamma \to \mathcal{H} \to WW, \ ZZ$$

From the simultaneous fit to the observed W^+W^- and ZZ mass spectra both the two-photon width $\Gamma_{\gamma\gamma}$ and phase $\phi_{\gamma\gamma}$ can be determined.

A.F.Żarnecki, ECFA/DESY workshop, November 2002, Praha (including systematic uncertainties)

SM-like 2HDM(II)

We consider SM-like solution B_h

Basic couplings, relative to SM:

$$\chi_{x} = g_{\mathcal{H}xx} / g_{\mathcal{H}xx}^{SM} \quad \mathcal{H} = h, H, A$$

$$\begin{matrix} h & H & A \\ A \\ \chi_{u} & -1 & -\frac{1}{\tan\beta} & -i\gamma_{5} \frac{1}{\tan\beta} \\ \chi_{d} & +1 & -\tan\beta & -i\gamma_{5} \tan\beta \\ \chi_{V} & \cos(2\beta) & -\sin(2\beta) & 0 \end{matrix}$$

CP conserving model:

Higgs production ($\Gamma_{\gamma\gamma}$ and $\phi_{\gamma\gamma}$) and decays depend on $\tan\beta$ only. For charged Higgs boson couplings (loop contribution to $\Gamma_{\gamma\gamma}$) we set

$$M_{H^{\pm}} = 800 \; GeV \qquad \mu = 0$$

<u>CP violation</u>

2HDM(II)

Mass eigenstates of the neutral Higgs-bosons h_1 , h_2 and h_3 do not need to match CP eigenstates h, H and A.

We consider weak CP violation through a small mixing between H and A states:

$$\begin{array}{ll} \chi_X^{h_1} &\approx \ \chi_X^h \\ \chi_X^{h_2} &\approx \ \chi_X^H \cdot \cos \Phi_{HA} \ + \ \chi_X^A \cdot \sin \Phi_{HA} \\ \chi_X^{h_3} &\approx \ \chi_X^A \cdot \cos \Phi_{HA} \ - \ \chi_X^H \cdot \sin \Phi_{HA} \end{array}$$

 \Rightarrow additional model parameter:

CP-violating mixing phase Φ_{HA}

We consider h_2 production and decays

2HDM(II)

Higgs boson h_2

Two-photon width and phase measurement for different $\tan \beta$ and Φ_{HA}

 1σ contours for 1 year of PC running statistical errors only $$M_{h}$=120~{\rm GeV},\,M_{H}$=800~{\rm GeV}$$

Expected precision at PLC: (for small mixing i.e. $\Phi_{HA} \sim 0$)

- ~ 10 % for tan β
- ~ 100 mrad for Φ_{HA} (for low tan β)

2HDM(II)

Higgs boson h_2

Solution B_h (with CP violation) \Rightarrow two free parameters (tan β and Φ_{HA})

Expected precision in $\tan \beta$ and Φ_{HA} determination at PLC (stat.+sys. errors)

CP violating H–A mixing angle can be precisely measured, if $\tan \beta$ is not too large

Comparison with LHC and LC

Higgs boson h_2 (Solution B_h with weak CP violation)

Expected Higgs-boson production rates times W^+W^-/ZZ branching ratios, relative to SM predictions, as a function of tan β and the CP violating mixing angle Φ_{HA}

Comparison with LHC and LC

 $\mathsf{LHC} \oplus \mathsf{LC} \oplus \mathsf{PLC}$

Determination of $\tan \beta$ and the CP violating mixing angle Φ_{HA} (1 σ contours) for 2HDM (II) solution B_h with CP violation ($M_{h_2} = 250$ GeV, $\tan \beta = 0.5$):

CP violating H–A mixing can be precisely measured in SM-like 2HDM (II) solution B_h . Can we distinguish between solution B_h with CP violation (tan β and Φ_{HA}) from CP conserving 2HDM (II) (also with two parameters: tan β and α)?

Comparison

$\underline{\mathsf{LHC} \oplus \mathsf{LC} \oplus \mathsf{PLC}}$

2HDM (II) couplings determined (assuming CP conservation) at LHC, LC and PLC for h_2 (solution B_h) with $M_{h_2} = 250$ GeV and $\tan \beta = 0.5$

Only from combined analysis of LHC, LC and PLC measurements we can establish indirect CP violation in 2HDM (II)

Couplings

Model with a generic tensor couplings of a Higgs boson \mathcal{H} , to ZZ and W^+W^- :

$$g_{\mathcal{H}ZZ} = ig \frac{M_Z}{\cos \theta_W} \left(\lambda_H \cdot g^{\mu\nu} + \lambda_A \cdot \varepsilon^{\mu\nu\rho\sigma} \frac{(p_1 + p_2)_{\rho} (p_1 - p_2)_{\sigma}}{M_Z^2} \right)$$

$$g_{\mathcal{H}WW} = ig M_W \left(\lambda_H \cdot g^{\mu\nu} + \lambda_A \cdot \varepsilon^{\mu\nu\rho\sigma} \frac{(p_1 + p_2)_{\rho} (p_1 - p_2)_{\sigma}}{M_W^2} \right)$$
with: $\lambda_H = \lambda \cdot \cos \Phi_{HA}$ $\lambda_A = \lambda \cdot \sin \Phi_{HA}$

Standard Model (scalar) couplings are reproduced for $\Phi_{HA} = 0$ ($\lambda_H = 1$ and $\lambda_A = 0$).

Pseudoscalar Higgs boson corresponds to $\lambda_H = 0$ and $\Phi_{HA} = \frac{\pi}{2} \lambda_A = 1$.

We consider small CP violation (small deviations from SM), i.e. $|\Phi_{HA}| \ll 1$

Model: S.Y. Choi, D.J. Miller, M.M. Mühlleitner and P.M. Zerwas, hep–ph/0210077;
D.J. Miller, S.Y. Choi, B. Eberle, M.M. Mühlleitner and P.M. Zerwas, Phys. Lett. B505 (2001) 149;
D.J. Miller, Spin and Parity in the HZZ vertex, ECFA/DESY meeting, Prague, November 2002.
Higgs CP from H → τ⁺τ⁻: K. Desch, A. Imhof, Z. Was, M. Worek, hep-ph/0307331;
K. Desch, Z. Was, M. Worek, Eur.Phys.J.C29 (2003) 491, hep-ph/0302046.

Higgs CP from $\mathcal{H} \rightarrow t\overline{t}$: E. Asakawa, K. Hagiwara, hep-ph/0305323.

Angular distributions

Angular variables used in the analysis of higgs CP-properties:

- higgs decay angle angle Θ_h
- polar angles Θ_1 and Θ_2
- angle between two Z/W decay planes,

 $\Delta \phi = \phi_2 - \phi_1$

To simplify the analysis, we introduce

 $\zeta = \frac{\sin^2 \Theta_1 \cdot \sin^2 \Theta_2}{(1 + \cos^2 \Theta_1) \cdot (1 + \cos^2 \Theta_2)}$

ratio of the distributions expected for a scalar and a pseudoscalar higgs (for $M_h \gg M_Z$).

All polar angles are calculated in the rest frame of the decaying particle.

Angular distributions

Normalized angular distributions expected for scalar and pseudoscalar higgs, for $\mathcal{H} \to ZZ \to l^+ l^- jj$ $M_{\mathcal{H}} = 300 \text{ GeV}.$

Both distributions clearly distinguish between decays of scalar and pseudoscalar higgs.

Nonuniformity of selection efficiency in $\Delta \phi$ largest for small m_h

 m_h = 200 GeV, $\sqrt{s_{ee}}$ =305 GeV

 m_h = 300 GeV, $\sqrt{s_{ee}}$ =418 GeV

Effect much stronger for background events and pseudoscalar higgs due to different $\cos \theta_{j,l}$ distribution

Measured $\Delta \phi$ and ζ distributions for $h \rightarrow ZZ \rightarrow q\bar{q} l^+ l^- m_h = 200 \text{ GeV}$ after 1 year of PC running at $\sqrt{s_{ee}}=305 \text{ GeV}$, $\mathcal{L} = 610 fb^{-1}$ $\Rightarrow \sim 675 \text{ reconstructed SM higgs events expected} + 145 ZZ \text{ background events}$

Measured ζ_{ZZ} distribution:

Determination of CP violation from $\mathcal{H} \rightarrow WW, ZZ$

Sensitivity

In the general case We can not assume that $\Gamma_{\gamma\gamma}$, $\phi_{\gamma\gamma}$ and λ are the same as in the SM \Rightarrow fit all distributions simultaneously to constrain all parameters

<u>Results</u>

Combined measurement for W^+W^- and ZZ decay channels

from simultaneously fit of $\Gamma_{\gamma\gamma}$, $\phi_{\gamma\gamma}$, λ and Φ_{HA} to all considered distributions Measurement error for Higgs-boson couplings to vector bosons:

 $W^+W^- \Rightarrow$ higher statistics, but huge background \Rightarrow large systematic uncertainties

Summary

Using W^+W^- and ZZ final states both the partial width $\Gamma_{\gamma\gamma}$ and the phase of the $\mathcal{H} \to \gamma\gamma$ amplitude $\phi_{\gamma\gamma}$ can be measured at the Photon Linear Collider. Mass range 200 < $M_{\mathcal{H}}$ < 350 GeV considered.

Both $\tan \beta$ and the CP violating H–A mixing phase Φ_{HA} can be measured at PLC, assuming solution B_h of 2HDM (II).

 Φ_{HA} with precision $\Delta \Phi_{HA} \leq 0.1$ rad, for $\tan \beta < 1$

In general case, combined analysis of LHC, LC and PLC measurements is needed to establish weak CP violation.

From combined measurement of angular correlations in the W^+W^- and ZZ decays CP violation in the higgs couplings to vector bosons can be determined to about 10%.

$\gamma\gamma \to \mathcal{H} \to WW, \ ZZ$

We consider Higgs boson production and decays to WW/ZZ, for masses 200–350 GeV.

For resonant $\gamma \gamma \rightarrow h \rightarrow W^+W^-$ signal Large interference effects are expected in the considered mass range J=0100 [dd] N. f. H⁺... 170 GeV NŻK $W^{-}(Z)$ b 80 there is a large non-resonant bg. 300 GeV 60 200 GeV 250 GeV 40 no higgs with higas 20 0 200 250 300 350 **W**_{vv} [**GeV**]

Interference is sensitive to the phase of the two-gamma amplitude

$\gamma\gamma \to \mathcal{H} \to WW, \ ZZ$

Simulation

 $\gamma\gamma$ spectra from **CompAZ** hep-ex/0207021

 $\gamma\gamma \rightarrow W^+W^-$, ZZ events generated with PYTHIA 6.152

events reweighted to take into account:

- beam polarization
- Higgs production and interference

detector simulation with SIMDET v. 3.01

total $\gamma\gamma$ luminosity: 600 – 1000 fb^{-1}

High $W_{\gamma\gamma}$ peak: 75 - 115 fb^{-1}

for $\sqrt{s_{ee}}$ = 305 – 500 GeV

Parametrization

"Measured" invariant mass distribution for selected W^+W^- and ZZ events is described by convolution of:

- Analytical luminosity Spectra CompAZ
- Cross section formula for signal + background + interf.
- Invariant mass resolution parametrized as a function of $W_{\gamma\gamma}$

 \Rightarrow mass spectra can be calculated for any $\sqrt{s_{ee}}$ and m_h without time-consuming MC simulation

 \Rightarrow can be used for fast simulation and fitting

overall normalization

Higgs boson mass

Higgs boson width

relative normalization of WW and ZZ samples fixed

Systematic uncertainties

Influence of systematic uncertainties on the $\tan \beta$ determination is estimated by adding additional free parameters to the fit:

Uncertainties:

Parameters:

- luminosity
- energy scale
- Higgs boson mass
- mass resolution
- Higgs boson width
- Iuminosity spectra \Rightarrow spectra shape variations:

 $\frac{dL}{dW_{\gamma\gamma}} = \frac{dL^{CompAZ}}{dW_{\gamma\gamma}} (1 + A \cdot \sin \pi x + B \cdot \sin 2\pi x) \quad x = \frac{W_{\gamma\gamma} - W_{min}}{W_{max} - W_{min}}$

2HDM(II)

Higgs boson h_2

Influence of systematic uncertainties on $tan \beta$ and Φ_{HA} measurement

Correlation between $\tan \beta$ and Φ_{HA} increases expected measurement errors

Comparison with LHC and LC

CP conserving 2HDM (II)

Expected Higgs-boson *h* production rates times W^+W^-/ZZ branching ratios, relative to SM predictions, as a function of basic relative couplings:

Invariant mass cut optimized for background rejection

 $h \rightarrow ZZ \rightarrow q\bar{q} l^+ l^ m_h$ =250 GeV:

SM higgs selection efficiency ~40% (for $ZZ \rightarrow q\bar{q} l^+ l^-$ events, $l = \mu, e$) $\times BR(ZZ \rightarrow q\bar{q} l^+ l^-) \approx 9.4\%$ SM higgs selection efficiency $\sim 30\%$ (for $WW \rightarrow q\bar{q}q\bar{q}$ events) $\times BR(WW \rightarrow q\bar{q}q\bar{q}) \approx 46.9\%$

Expected accuracy of decay angles measurement:

All angles can be measured with high accuracy

Shape described by Breit-Wigner distribution

Selection efficiency as a function of the azimuthal angle ϕ_q

 m_h = 300 GeV, $\sqrt{s_{ee}}$ =418 GeV

similar pattern observed for $Z \rightarrow l^- l^+$

Acceptance losses for $\phi = 0, \pi, \ldots$ are due to the jet/lepton going in the beam direction

Selection efficiency for $\phi_j \approx 0$:

red lines: $\cos \theta_j^{LAB} = \pm \cos \theta_Z^{LAB}$

Measured M_{ZZ} and Θ_h distributions for $h \to ZZ \to q\bar{q} l^+ l^- m_h = 200 \text{ GeV}$ after 1 year of PC running at $\sqrt{s_{ee}}=305 \text{ GeV}$, $\mathcal{L}=610 fb^{-1}$

pseudoscalar normalized to the same number of events

Sensitive to CP violation mainly due to interference with SM background.

Measured $\Delta \phi$ and ζ distributions for $h \rightarrow WW \rightarrow q\bar{q} l^+ l^- m_h = 200 \text{ GeV}$ after 1 year of PC running at $\sqrt{s_{ee}}=305 \text{ GeV}$, $\mathcal{L}=610 fb^{-1}$ $\Rightarrow \sim 8000 \text{ reconstructed SM higgs events expected} + \sim 170 000 \text{ background events}$

Measured $\Delta \phi_{WW}$ distribution:

Measured ζ_{WW} distribution:

Determination of CP violation from $\mathcal{H} \rightarrow WW, ZZ$