Distinguishing Non-minimal Higgs sectors via precise measurements of a light neutral Higgs boson

Andrew Akeroyd KEK Theory Group LCWS2004 Paris, 22 April 2004

Contents

- SUSY phases in MSSM
- Scalar-pseudoscalar mixing
- Case of large phases and large M_{SUSY}
- Phenomenology of H_1
- Conclusions

In collaboration with S. Kanemura, Y. Okada and E. Senaha

2 Higgs doublet models

2 Higgs doublets models contain CP even fields and CP odd fields

$$\Phi_1^{=} \begin{pmatrix} \phi_1^+ \\ \phi_1^0 + ia_1 \end{pmatrix} \qquad \Phi_2^{=} \begin{pmatrix} \phi_2^+ \\ \phi_2^0 + ia_2 \end{pmatrix}$$

• *CP conserving 2HDM*: Neutral Higgs mass eigenstates are either pure CP even or pure CP odd: $H_i = f(\phi_i^0)$ or $H_i = f(a_i)$

• CP violating 2HDM:

Neutral Higgs mass eigenstates are mixtures of CP even and CP odd fields:

 $H_i = f(\phi_i^0, a_i)$

MSSM Higgs potential

The most general 2HDM potential is given by:

$$V = \mu_1^2 (\Phi_1^+ \Phi_1) + \mu_2^2 (\Phi_2^+ \Phi_2) + \lambda_1 (\Phi_1^+ \Phi_1)^2 + \lambda_2 (\Phi_1^+ \Phi_1)^2 + \lambda_3 (\Phi_1^+ \Phi_1) (\Phi_2^+ \Phi_2) + \lambda_4 |\Phi_1^+ \Phi_2|^2 + \{m_{12}^2 (\Phi_1^+ \Phi_2) + h.c\} + [\lambda_5 (\Phi_1^+ \Phi_2)^2 + h.c] + [\lambda_6 (\Phi_1^+ \Phi_1) (\Phi_1^+ \Phi_2) + h.c] + [\lambda_7 (\Phi_2^+ \Phi_2) (\Phi_2^+ \Phi_1) + h.c]$$

In the MSSM tree level potential (V₀) one has:

$$\mu_i^2 = -m_i^2 - |\mu|^2 , \quad \lambda_1 = \lambda_2 = -\frac{1}{8}(g^2 + g'^2)$$

$$\lambda_3 = -\frac{1}{4}(g^2 - g'^2) , \quad \lambda_4 = \frac{1}{2}g^2 , \quad \lambda_5 = \lambda_6 = \lambda_7 = 0$$

No Explicit CP violation in V_0 (all real parameters)

In 1-loop potential V_1 :

$\lambda_5, \lambda_6, \lambda_7 \neq 0$

from radiative corrections from $t, \tilde{t}, b, \tilde{b}$ etc

Effective potential technique employed:

 $\lambda_5, \lambda_6, \lambda_7 = f(\mu, A_t, A_b, M_{SUSY}...)$

 $\lambda_5,\lambda_6,\lambda_7$ can be complex if SUSY parameters complex \rightarrow scalar-pseudoscalar mixing

The neutral Higgs boson mass squared matrix in basis (A^0, ϕ_1, ϕ_2) :

$$M_N^2 = \begin{pmatrix} M_P^2 & M_{SP}^2 \\ M_{PS}^2 & M_S^2 \end{pmatrix}$$

where $M_{PS} = (M_{SP})^T$

In terms of λ_i :

$$M_{PS}^{2} = v^{2} \left(\begin{array}{c} Im(\lambda_{5}) \sin \beta + Im(\lambda_{6}) \cos \beta \\ Im(\lambda_{5}) \cos \beta + Im(\lambda_{7}) \sin \beta \end{array} \right)$$

In CP conserving MSSM:

- $M_{PS}^2 = (0,0)$, corresponding to real $\lambda_5, \lambda_6, \lambda_7$
- $M_P^2 = M_A^2$
- Pure CP-even h^0, H^0 and pure CP-odd A^0

In CP violating MSSM (i.e. $arg(\mu)$, $arg(A_t) \neq 0$):

- $Im(\lambda_5), Im(\lambda_6), Im(\lambda_7) \neq 0$
- $O^T M_N^2 O = \text{Diag}(M_{H_1}^2, M_{H_2}^2, M_{H_3}^2)$, with $M_{H_1} < M_{H_2} < M_{H_3}$
- H_1, H_2, H_3 are mixed states of CP: $H_i = f(A^0, \phi_1, \phi_2)$

Magnitude of scalar-pseudoscalar mixing

Pilaftsis 98, Pilaftsis, Wagner 99, Choi, Lee, Drees 00

$$M_{PS}^2 = \left(\frac{m_t^4}{v^2} \frac{|\mu||A_t|}{32\pi^2 M_{SUSY}^2}\right) \sin \phi_{CP} \times f(M_{SUSY}, A_t, \mu, \tan \beta)$$

where $\phi_{CP} = arg(A_t\mu)$

Optimal M_{PS}^2 requires:

- Large $|\mu|/M_{SUSY}$,
- Large $|A_t|/M_{SUSY}$
- moderate to large $\sin \phi_{CP}$

Constraints on $\sin \phi_{CP}$

 $\sin \phi_{CP}(=arg(\mu A_t))$ strongly constrained by EDMs of the neutron and electron

Phenomenology often done for $M_{SUSY} < 1000$ GeV case:

- $arg(\mu)$ strongly constrained by 1-loop EDM diagrams
- arg(A_t) relatively unconstrained by 1-loop EDM
 → 2-loop graphs important (Chang,Keung,Pilaftsis,
 99)
- Large $\sin \phi_{CP}$ due to cancellation mechanism (Nath,Ibrahim 98) or fine tuning of phases

We are interested in $M_{SUSY} > 2000 \text{ GeV}$ case: (Ibrahim 01)

- Constraints on $arg(\mu)$, $arg(A_t)$ are weakened $\sim 1/M_{SUSY}^2$
- CP violation in Higgs sector remains as $M_{SUSY} \rightarrow \text{large}$
- Aim to see if pseudoscalar-scalar mixing can be sizeable even if SUSY partices out of range at LHC/Linear Collider

CP-odd component of H1

Scalar-pseudoscalar mixing in H_1

We focus on H_1

(i) In MSSM with $\phi_{CP} = 0$:

$$H_1 = O_{11}\Phi_1 + O_{21}\Phi_2$$

(ii) In MSSM with $\phi_{CP} \neq 0$:

$$H_1 = O_{11}\Phi_1 + O_{21}\Phi_2 + O_{31}A^0$$

	MSSM ($\phi_{CP} = 0$)	MSSM ($\phi_{CP} \neq 0$)
$H_1 b \overline{b}$	O_{11}/\coseta	$O_{11}/\cos\beta + O_{31}\tan\beta$
H_1VV	$O_{11}\cos\beta + O_{21}\sin\beta$	$O_{11}\cos\beta + O_{21}\sin\beta$
$H_1 c\overline{c}$	$O_{21}/\sin\beta$	$O_{21}/\sin\beta + O_{31}\cot\beta$

Production at e^+e^- colliders

- Offers a clean environment in which to produce neutral Higgs bosons
- Is an ideal place to probe scalar-pseudoscalar mixing

$$\mathcal{L}_{H_iVV} = \frac{gm_W}{c_W^2} \sum_{i=1}^3 \frac{C_i}{C_i} H_i Z_\mu Z^\mu$$
$$\frac{C_i}{C_i} = O_{1i} \cos\beta + O_{2i} \sin\beta \quad ,$$

• There exists the following sum rule:

$$C_1^2 + C_2^2 + C_3^2 = 1$$

Observables sensitive to $\sin \phi_{CP}$

- Precision measurements of H_1
 - (i) $\sigma(e^+e^- \rightarrow H_1Z)$
- (ii) $\mathsf{BR}(H_1 \to b\overline{b})$

We aim to see if these observables can deviate from the $\sin \phi_{CP} = 0$ case for:

- Large $\sin \phi_{CP}$
- $M_{SUSY} > 2000 GeV$

Numerical results

We take the following input parameters: $\widetilde{M}_Q = \widetilde{M}_t = \widetilde{M}_b = M_{SUSY} = 3 \text{TeV},$ $|A_t| = 1.5 M_{SUSY}$, $|\mu| = 10 M_{SUSY}$, $\tan \beta = 7$ $0 < \text{Arg}(A_t) < 2\pi$

Fig.1: $\sigma(e^+e^- \rightarrow H_1Z)$ as a function of m_{H_1} at $\sqrt{s} = 500$ GeV, for various ϕ_{CP} :

- $\sigma(e^+e^- \rightarrow H_1Z)$ can be very suppressed for large ϕ_{CP}
- Suppression remains even for $m_{H_1} > 115~{
 m GeV}$

Fig.2: $\sigma(e^+e^- \rightarrow H_1Z)$ as a function of $m_{H^{\pm}}$ at $\sqrt{s} = 500$ GeV, for various ϕ_{CP} :

• Sizeable deviation from SM rate for $\sigma(e^+e^- \rightarrow H_1Z)$ for $m_{H^\pm} < 230 \text{ GeV}$

Fig.3: g_{bb} against g_{WW} varying $m_{H^{\pm}}$ for various ϕ_{CP} :

• g_{bb} for large $\sin \phi_{CP}$ can be much larger than for $\sin \phi_{CP} = 0$ case

Fig.1: $\sigma(e^+e^- \rightarrow H_1Z)$ as a function of m_{H_1} at $\sqrt{s} = 500$ GeV, for various ϕ_{CP} :

Fig.2: $\sigma(e^+e^- \rightarrow H_1Z)$ as a function of $m_{H^{\pm}}$ at $\sqrt{s} = 500$ GeV, for various ϕ_{CP} :

Fig.3: g_{bb} against g_{WW} varying $m_{H^{\pm}}$ for various ϕ_{CP} :

Conclusions

- SUSY phase $\phi_{CP} \neq 0 \rightarrow$ Scalar-pseudoscalar mixing
- Large A_t and μ required
- $M_{SUSY} > 2000 \text{ GeV}$ relaxes EDM constraints on ϕ_{CP}
- Large scalar-pseudoscalar mixing possible
- $\sigma(e^+e^- \rightarrow ZH_1)$ can be sizeably suppressed, even for $m_h \geq 115~{\rm GeV}$
- Very different from MSSM with $\phi_{CP} = 0$