The Higgs and neutralino sectors of the NMSSM

- ♦ Introduction: The NMSSM and its motivation
- ♦ The Higgs Sector
- ♦ The Neutralino Sector
- ♦ Conclusions & Summary

Introduction: The NMSSM and its motivation

The <u>N</u>ext–to–<u>M</u>inimal <u>S</u>upersymmetric <u>S</u>tandard <u>M</u>odel

MSSM: two Higgs doublets [analyticity and anomaly cancellation]

$$\hat{H}_d = \begin{pmatrix} \hat{H}_d^0 \\ \hat{H}_d^- \end{pmatrix}, \ \hat{H}_u = \begin{pmatrix} \hat{H}_u^+ \\ \hat{H}_u^0 \end{pmatrix}$$

 H_d couples to down-type quarks and leptons H_u couples to up-type quarks and leptons

NMSSM: two Higgs doublets, \hat{H}_d and \hat{H}_u , and a new Higgs singlet superfield \hat{S}

 $\widehat{S} \longrightarrow \left\{ \begin{array}{l} \operatorname{new} \text{ scalar Higgs boson} \\ \operatorname{new} \text{ pseudoscalar Higgs boson} \\ \operatorname{new} \text{ higgsino} \end{array} \right.$

 \diamond Well motivated by high scale theories

 \diamond Solves the μ -problem

The μ -problem

MSSM Superpotential:

$$W = \hat{u}^c \,\mathbf{h_u} \hat{Q} \hat{H}_u - \hat{d}^c \,\mathbf{h_d} \hat{Q} \hat{H}_d - \hat{e}^c \,\mathbf{h_e} \hat{L} \hat{H}_d \,+ \boldsymbol{\mu} \hat{H}_u \hat{H}_d$$

Note the appearance of μ in W (the "Higgs-higgsino mass parameter")

- μ has dimensions of mass
 μ has no *a priori* link to EW scale $\left. \right\} \text{ expect } \mu = 0 \text{ or } M_{\text{Planck}}$

But for correct phenomenology need $\mu \sim 100~{\rm GeV}-1~{\rm TeV}$

Why is $\mu \approx EW/SuSy$ scale?

This is known as the " μ -problem"

D.J. Miller

NMSSM Superpotential:

$$W = \hat{u}^c \mathbf{h}_{\mathbf{u}} \hat{Q} \hat{H}_u - \hat{d}^c \mathbf{h}_{\mathbf{d}} \hat{Q} \hat{H}_d - \hat{e}^c \mathbf{h}_{\mathbf{e}} \hat{L} \hat{H}_d + \frac{\lambda \hat{S} \hat{H}_u \hat{H}_d}{1 + \frac{1}{3} \kappa \hat{S}^3}$$

Now no dimensionful parameters \Rightarrow No μ problem!

• Effective μ term generated by dynamical symmetry breaking

When S develops a non-zero vacuum-expectation-value

$$\lambda S H_u H_d \longrightarrow \lambda \langle S \rangle H_u H_d = \mu_{\text{eff}} H_u H_d$$

 $\mu_{\rm eff} = \lambda \langle S \rangle$

• $\frac{1}{3}\kappa S^3$ term is included to break additional U(1) symmetry

[provides extra mass for Higgs bosons]

The Higgs Sector

Relevant parameters:

 λ

 κ

 A_{λ}

 A_{κ}

 $\tan \beta = \frac{\langle S \rangle}{\langle H_u \rangle} / \langle H_d \rangle$

couplings to other Higgs [if $\lambda = 0$, new states decouple] contributes mass to new Higgs

associated soft SuSy-breaking parameters

vacuum-expectation-values

Today's scenario:

$$\lambda = 0.3, \kappa = 0.1, A_{\kappa} = -100 \text{GeV}, \langle S \rangle = 3 \times 174 \text{GeV}, \tan \beta = 3$$

 A_{λ} replaced by heavy pseudoscalar mass M_{A_2} and allowed to vary

The Higgs Mass Spectrum

Spectrum like MSSM + 2 extra states

3 scalars:	H_1 ,	<i>H</i> ₂ ,	H_3	
2 pseudoscalars:	A_1 ,	A_2		
Charged:	H^{\pm}			

Approximate masses for $1/\tan\beta$ and M_Z/M_{A_2} small [tree-level]:

$$\begin{split} M_{H_3} &\approx M_{H^\pm} \approx M_{A_2} \\ M_{H_2}^2 &\approx M_Z^2 \cos^2 2\beta \\ M_{H_1}^2 &\approx \kappa \langle S \rangle [4\kappa \langle S \rangle + A_\kappa] \qquad M_{A_1}^2 \approx -3\kappa \langle S \rangle A_\kappa \\ \text{New bosons have mass depending on } \kappa \langle S \rangle \end{split}$$

At one-loop:

NMSSM H_1ZZ coupling small \Rightarrow rather light Higgs is not ruled out

 $\sigma(e^+e^- \rightarrow Z^* \rightarrow ZH_1) \approx 0$ for $M_{A_2} \approx 2\mu_{\rm eff}/\sin 2\beta$

Allowed region opens up as κ is increased.

e.g.
$$\kappa = 0.25$$
 [with $\langle S \rangle = 3 \times 174$ GeV, $A_{\kappa} = -100$ GeV as before]

 $M_{H_2}^2 \approx \kappa \langle S \rangle [4\kappa \langle S \rangle + A_\kappa] \approx 235 \text{ GeV} \qquad M_{A_1}^2 \approx -3\kappa \langle S \rangle A_\kappa \approx 198 \text{ GeV}$

LCWS04, April 22

Lightest Higgs boson production at the LHC & its decay

Hadronic decay \Rightarrow Huge SM backgrounds

Very difficult to see at the LHC

Can an e^+e^- Linear Collider close this gap?

Lightest Higgs production at a $\sqrt{s} = 500$ GeV e^+e^- Linear Collider

Production and decay for second lightest ("h"-like) Higgs

LCWS04, April 22

The Neutralino Sector 2 gauginos + 2 higgsinos + "singlino" \rightarrow 5 neutralinos 600 500 4 $m_1 \approx \mu - \dots$ 400 $m_2 \approx \mu + \dots$ $m_3 \approx M_1 + \dots$ 300 3 $m_4 \approx M_2 + \dots$ 200 2 $m_5 \approx 2\kappa \langle S \rangle + \dots$ 100 5 0 80 100 20 40 60 μ_{λ} [GeV]

 $\mu_{\lambda}=\lambda v/\sqrt{2}$ $M_1=250~{\rm GeV},~M_2=500~{\rm GeV},~{\rm tan}~\beta=3,~\mu=170~{\rm GeV},~\kappa\langle S\rangle=60~{\rm GeV}$

Neutralino Mass [GeV]

Ingredients of lightest Neutralino

In this scenario LSP is singlino!

Extremely important to study – end product of all SuSy decay chains.

Comparison of NMSSM at $\mu_{\lambda} = 60$ GeV with the MSSM ($\mu_{\lambda} = 0$ limit)

Mass(GeV)	5	1	2	3	4
MSSM	108	142	173	264	517
NMSSM		163	182	264	517

Heavy states are unaffected by precence of singlino (as expected)

If we see (e.g.) 3 $\tilde{\chi}^0$ states at the LHC, are we seeing $\tilde{\chi}^0_1$, χ^0_2 and $\tilde{\chi}^0_4$ of the MSSM or $\tilde{\chi}^0_5$, $\tilde{\chi}^0_1$ and $\tilde{\chi}^0_2$ of the NMSSM?

No displaced vertices unless μ_{λ} is very small

LCWS04, April 22

page 17 of 19

... or in decays of heavy Higgs bosons

LCWS04, April 22

Conclusions & Summary

- \diamond NMSSM is a well motivated extension of MSSM: solves μ -problem
- \diamond New superfield $\hat{S} \Rightarrow 3$ new particles, H, A, $\tilde{\chi}^0$, with $M \sim \kappa \langle S \rangle$
- ♦ Higgs sector:
 - light H with reduced Z couplings would escape LEP2 limits
 - difficult to see at LHC \longrightarrow need an e^+e^- LC
 - even LC has a blind spot where Z-coupling vanishes
- ♦ Neutralino sector:
 - light $\tilde{\chi}_5^0$ could be singlino LSP
 - 'usual' LSP decays to $\tilde{\chi}_5^0$ rapidly (eg. $\tilde{\chi}_1^0 \rightarrow \tilde{\chi}_5^0 l^+ l^-$)