FFIR Test Facility

T. Tauchi KEK ATF2 Collaboration

LCWS2004, Paris

Goals

(1) Final focus test beam at ATF

- experimental verification of Pantaleo's optics
- demonstration of 30nm focus with $\sigma_x/\sigma_y=100/1$
- establishment of tuning methods
- nano technology of BPM, Shintake monitor
- final focus quadrupole magnet in the support tube
- beam halo studies by "octupole optics" etc.

Goal continued

(2) Nanometer stabilization of final doublet

- one final doublet and nano-BPM at IP
 - for the demonstration
- support tube structure;
 - role of a central CFRP tube
- nanometer position measurements based on laser interferometer (QPD, Optical anchor)
- nanometer stabilization with active movers
- inertial sensors
- fast feedback system at nanometer level

Option

(1) Test facility for photon collider
 - Laser facility for LC specifications

 laser: 1.3J/pulse with a spot size of 3um,
 192 pulses/1.4ns at 150Hz
 optics at IP

- Study of "strong" QED

Two Final Focus Systems

(1) Non–local chromaticity correction : JLC Design Study

Optics Designs

Chromaticity : $\Delta \sigma^* = \xi \delta \sigma^*$, $\delta = (E - E_0)/E_0$

 ξ correction by Sextupole (SX)

SX geometric aberration cancellation (1) Non-local correction

FFTB/SLAC to ATF : 60 nm • $\sqrt{\frac{46}{1.28} \frac{3 \times 10^{-8}}{3 \times 10^{-6}}} = 36 \text{ nm!}$

(2) Local correction

Chromaticity Correction at the nominal optics

ATF FF Chromaticity

Chromaticity Correction at optics (a)

Local X iy Correction

Element

Chromaticity Correction at the GLC; L*=3.5m

effh1.1 Chromaticity

Element

Summary of Chromaticity Corrections

LC	L*=3.5m	L*=3.5m;Roadmap L*=4.3m;NLC2001		ATF2	(a); L*=2m		(b); L*=2m		
magnet	ξ _x	ξy	ξχ	ξγ	magnet	ξχ	ξy	ξ _x	ξy
SF1(SF1B)	11,704.8	-18,419.3	9,328,2	-11,503.7	SF2F	4,884.1	-7,637.6	3,853.1	-4,076.5
QF1	-5,965.4	12,167.1	-6,009.2	9,880.8	QC2F	-1868.5	3367.6	-2,505.8	3,055.1
SF1A	-	-	2,890.8	-10,209.2	-	-	-	-	-
SD0	-3,886.1	51,772.3	-3,039.3	69,872.7	SD2F	-891.9	35,193.7	-691.0	18,446.4
QD0	1,320.7	-56,556.2	943.1	-64,457.0	QC3F	261.7	-28,500.1	350.9	-25,858.2
Total	-31.1	-2.8	-39.6	-42.1	Total	-151.1	168.5	-43.3	142.6
Local; from QF3.2	3,190.5	-11,016.0	4,149.9	-6,429.1	Local;from QB3F	-1718.0	-258.0	-115.7	-10854.0

1.54 GeV S-band Linac

Cost Estimation : FF facility

FFTB/ATF	thick	width	length	area	cost/area	cost	
unit	m	m	m	m ²	yen/m²	yen	
floor	1	7.2	56	403.2	126,960	51,190,078	
shield	thick x 2	height	length	volume	cost/volume	cost	
unit	m	m	m	m ³	yen/m³	yen	
concrete	2	3	56	336	20,000	6,720,000	
concrete	2	3	5.2	31.2	20,000	624,000	
total	-	-	-	367.2	20,000	7,344,000	

Cost Estimation : FF components

magnet	number	cost/unit	cost (yen)
QA	8	1,200,000	9,600,000
QB	8	1,200,000	9,600,000
QC1	2	2,500,000	5,000,000
QC2	2	2,500,000	5,000,000
BH	2	2,500,000	5,000,000
SEXT	4	1,200,000	4,800,000
Power supply	26	1,500,000	39,000,000
Support	26	1,000,000	26,000,000
Cable	0	0	0
cavity-BPM	20	2,300,000	46,000,000
streak camera	0	0	0
laser wire	5	7,000,000	35,000,000
wire scanner	0	0	0
laser interferometer	1	10,000,000	10,000,000
vacuum chamber,pump	36.6	300,000	10,980,000
labor for setup	36.6	70,000	2,562,000
Total	-	_	208,542,000

Schedule

- 2002 optics design (Local correction, S.Kuroda)
- 2004 proposal
- 2005 construction starts
- 2008 Summer, completion
- 2009 achievement of $\sigma_v^*=36$ nm

nanometer stabilization of final quadrupole 2010-α PLC test facility strong QED experiments

SLAC-FFTB schedule 1989 optics design (Oide) 1990 proposal (CDR) 1993 summer completed 1994 spring 70nm 1995 RF-BPM 1997 E144:collision with laser (non-linear QED)

LLNL/SLAC system

45cm dia., 62cm long tube supported by 4 linear actuators on a girder; No active mover

NanoBPM KEK system

10cm thick, 150cm long reference bar; each BPM is set on active movers, which are controlled by laser interferometers

Stabilization between two systems by Optical Anchor as well as Inertial Sensors; FEATHER/FONT at the 2nd phase.