Contributions to the 2-loop Bhabha process: new results

Janusz Gluza *
DESY-Zeuthen

* Based on common work with Michał Czakon and Tord Riemann

Why study 2-loop Bhabha scattering now?
D. Prominent luminosity-monitoring reaction for $e^{+} e^{-}$colliders
D. Experimental accuracy points to 10^{-4}

D New Physics reach:
$e^{+} e^{-} e^{+} e^{-}$four fermion operators

Plan

2-loop topologies for Bhabha scattering in QED

Plan

2-loop topologies for Bhabha scattering in QED
D Identiftcation of Master Integrals (MIs)

Plan

2-loop topologies for Bhabha scattering in QED
D Identiftcation of Master Integrals (MIs)
Decalculation of exisiting results and calculation of new MIs: last four 3-point functions and a new 2-loop box

Plan

2-loop topologies for Bhabha scattering in QED
D Identiftcation of Master Integrals (MIs)
Decalculation of exisiting results and calculation of new MIs:
last four 3-point functions and a new 2-loop box
Dross checks of results

Plan

2-loop topologies for Bhabha scattering in QED
D Identiftcation of Master Integrals (MIs)
Decalculation of exisiting results and calculation of new MIs:
last four 3-point functions and a new 2-loop box
Dross checks of results

Summary and outlook

Basic 2-loop vertices

There are 16 Master Integrals for them (Tadpole, 5 SE, 10 V) R. Bonciani, P. Mastrolia, E. Remiddi, Nucl. Phys. B661(2003)289

Basic 2-loop boxes

Main prototype	Number of Mls
B1	23
B2	42
B3	52
B4	35
B5	14
B6	15

B5

B6

B5: Bonciani et al., Nucl. Phys. B681(2004)261
B1: V. Smirnov, Phys. Lett. B524(2002)129

Identification of MIs: the method

New software by M. Czakon (IdSolver)

Identification of MIs: the method

New software by M. Czakon (IdSolver)

- Laporta algorithm (finite basis solution)

Identification of MIs: the method

New software by M. Czakon (IdSolver)

- Laporta algorithm (finite basis solution)
- IBP identities with and without Lorentz Invariance
\Longrightarrow in all cases LI ids contained in IBP

Identification of MIs: the method

New software by M. Czakon (IdSolver)

- Laporta algorithm (finite basis solution)
- IBP identities with and without Lorentz Invariance
\Longrightarrow in all cases LI ids contained in IBP
- In practice LI ids useful to speed up

Identification of MIs: the method

New software by M. Czakon (IdSolver)

- Laporta algorithm (finite basis solution)
- IBP identities with and without Lorentz Invariance
\Longrightarrow in all cases LI ids contained in IBP
- In practice LI ids useful to speed up

Identification of MIs for vertices takes a couple of minutes

Identification of MIs: the method

New software by M. Czakon (IdSolver)

- Laporta algorithm (finite basis solution)
- IBP identities with and without Lorentz Invariance
\Longrightarrow in all cases LI ids contained in IBP
- In practice LI ids useful to speed up

D Identification of Mls for vertices takes a couple of minutes
D Boxes (high powers: 3 additional in denominator and 2 in numerator) B1: 4 h; B2: 9 h; B3,B4: 12 h; B5,B6: 1 h.

The complete set of MIs: additional vertices

The complete set of MIs: boxes

B613m4

The complete set of MIs: boxes

Altogether there are 42 MIs.

The complete set of MIs: B6I3m3 in more details

New MIs: 5 line box B5l2m1

Differential equation method (Kotikov, Remiddi)

$$
\begin{aligned}
\frac{1}{\epsilon^{2}} \rightarrow & \frac{1}{2} \log x\left(\frac{1}{1+x}+\frac{1}{-1+x}\right) \quad x=\frac{\sqrt{-s+4}-\sqrt{-s}}{\sqrt{-s+4}+\sqrt{-s}} \\
\frac{1}{\epsilon} \rightarrow & \frac{1}{4}\left(\frac{1}{1+x}+\frac{1}{1-x}\right) \\
& {\left[-2 \zeta(2)+\log x(\log x-4[-1+\log (1+x)+\log (1-y)]+2 \log y)-4 L i_{2}(-x)\right] }
\end{aligned}
$$

New vertices: example

$$
\begin{aligned}
& =\frac{2}{1-x^{2}}\left[8 \zeta(4)+\zeta(2) \log ^{2}(x)+\frac{1}{24} \log ^{4}(x)-4 \zeta(2) L i_{2}(x)+2 L i_{4}(x)\right] \\
& +\mathcal{O}(\epsilon)
\end{aligned}
$$

Cross-checks

Numerical evaluation of integrals at fixed kinematical points using sector decomposition (Binoth \& Heinrich).
Sometimes less straightforward methods have been used:

Cross-checks

Dumerical evaluation of integrals at fixed kinematical points using sector decomposition (Binoth \& Heinrich).

Sometimes less straightforward methods have been used:
Dubtractions in Feynman parameter representations in 1-loop-like integrals (massless propagator subloops)

Cross-checks

Dumerical evaluation of integrals at fixed kinematical points using sector decomposition (Binoth \& Heinrich).
Sometimes less straightforward methods have been used:
Dubtractions in Feynman parameter representations in 1-loop-like integrals (massless propagator subloops)

D For IR divergent integrals use IBP relations to the same integrals with irreducible numerators

Cross-checks

Dumerical evaluation of integrals at fixed kinematical points using sector decomposition (Binoth \& Heinrich).
Sometimes less straightforward methods have been used:
Dubtractions in Feynman parameter representations in 1-loop-like integrals (massless propagator subloops)
D. For IR divergent integrals use IBP relations to the same integrals with irreducible numerators

Divergent parts of IR safe integrals: propeties of the $\overline{M S}$ scheme exploited

D Numerical evaluation of integrals at fixed kinematical points using sector decomposition (Binoth \& Heinrich).
Sometimes less straightforward methods have been used:
Dubtractions in Feynman parameter representations in 1-loop-like integrals (massless propagator subloops)
D. For IR divergent integrals use IBP relations to the same integrals with irreducible numerators

D Divergent parts of IR safe integrals: propeties of the $\overline{M S}$ scheme exploited
Dubloop subtractions for numerical evaluation of finite parts

Subtraction in Feynman parameters for numerical evaluation

$$
\sim \int \frac{d^{d} k_{1} d^{d} k_{2}}{\left[k_{2}^{2}\right]\left[\left(k_{2}+k_{1}-p_{1}\right)^{2}\right]\left[k_{1}^{2}+m^{2}\right]\left[\left(k_{1}+p_{2}\right)^{2}\right]}
$$

$\rightarrow \quad \int \frac{d^{d} k_{1}}{\left[\left(k_{1}-p_{1}\right)^{2}\right] \epsilon\left[k_{1}^{2}+m^{2}\right]\left[\left(k_{1}+p_{2}\right)^{2}\right]}$
$=\quad \epsilon(1+\epsilon) \int_{0}^{1} d x d y d z x^{-1+\epsilon} \delta(1-x-y-z) \int \frac{d^{d} k_{1}}{\left(x D_{1}+y D_{2}+z D_{3}\right)^{2+\epsilon}}$
$\rightarrow \quad \frac{\Gamma(1-\epsilon)^{2} \Gamma(\epsilon)}{\Gamma(2-2 \epsilon)} \epsilon(1+\epsilon) \frac{\Gamma(2 \epsilon)}{\Gamma(2+\epsilon)} \int_{0}^{1} d x d y x^{-1+\epsilon}(1-x)^{1-2 \epsilon} F(x, y)$
Identity : $\quad \int_{0}^{1} d y\{[F(x, y)-F(0, y)]+F(0, y)\}$

Final result:

$=\frac{1}{2} \frac{1}{\epsilon^{2}}+\frac{5}{2} \frac{1}{\epsilon}+\frac{1}{2}\left[19+4 \zeta_{2}+2\left(\frac{x-1}{x+1}\right)\left[4 \zeta_{2}+\frac{1}{2} \ln ^{2} x+2 L i_{2}(x)\right]\right]$

Using irreducible numerators

$$
\begin{aligned}
O B J d(s) & =A_{-2}(s) \frac{1}{\epsilon^{2}}+A_{-1}(s) \frac{1}{\epsilon}+A_{0}(s)+\cdots \\
O B J(s) & =B_{-2}(s) \frac{1}{\epsilon^{2}}+B_{-1}(s) \frac{1}{\epsilon}+B_{0}(s)+\cdots \\
0 & =\frac{1}{\epsilon^{3}}\left[F_{1}(s)+F_{2}(s) A_{-2}(s)\right] \\
A_{-2}(s) & =\frac{1}{4 s} \quad \text { also: } A_{-1}(s)
\end{aligned}
$$

From renormalization theory:

$=\frac{1}{2} \frac{1}{\epsilon^{2}}+\frac{1}{\epsilon}\left(\frac{5}{2}+\log (x)-2 \log (1-x)\right)+\cdots$.

Subloop subtractions:

Cross check to all orders in ϵ

Summary and Outlook
D. The complete set of 3-point functions coming from vertex diagrams and from box diagrams after cancellations of some lines has been calculated. Apart from checking the known integrals this consisted in calculating 4 new master integrals.

Summary and Outlook

D The complete set of 3-point functions coming from vertex diagrams and from box diagrams after cancellations of some lines has been calculated. Apart from checking the known integrals this consisted in calculating 4 new master integrals.

D One new 5-line box integral coming from the planar double box diagram has been calculated.

Summary and Outlook

D. The complete set of 3-point functions coming from vertex diagrams and from box diagrams after cancellations of some lines has been calculated. Apart from checking the known integrals this consisted in calculating 4 new master integrals.

D One new 5-line box integral coming from the planar double box diagram has been calculated.

D All master integrals have been identifi ed. Altogether, there are 42 two-loop box type Ml's, 38 of them remain to be calculated (feasible within next few months)

