Polarization studies: Comparison of eter and eter for NLC and TESLA

Colloque international sur les collisionneurs linéaires LCWS04 19-23 Avril, 2004 Paris, France

Extraction Line Polarimetry

Spin Precession and Depolarization

Effects from Crossing Angle and Solenoid

Beam Simulations

MatLIAR-generated files from Andrei Seryi

LIAR+DIMAD+Matlab for DR -> IP beam simulation
Developed by NLC Accelerator physics group for TRC studies

They were obtained with non-perfect machines: LCs were initially misaligned and then brought back to ~nominal luminosity by one-to-one correction in the linac.

- generates distributions of incoming beams at IP
- 6 files each for NLC-500 and TESLA-500 machines (more available)
- Electron and positron beams are symmetric (ie. similar spotsizes, bunch lengths, charge), except for TESLA energy spread due to undulator

Guinea-Pig simulation

- electron.ini and positron.ini files from MatLIAR simulation
- beam1.dat and beam2.dat files for outgoing beam distributions
- lumi.dat file for distribution of particles that make luminosity

Extraction Line simulation

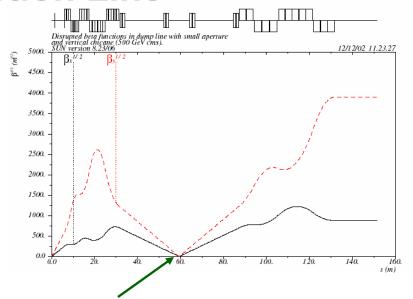
- GEANT3 simulation package from T. Maruyama run by K. Moffeit
- Also, DIMAD simulation from Y. Nosochkov

Outgoing Beam Parameters to Extraction Line

Depolarization, due to spin diffusion:

$$\theta_{spin} = \frac{E(\text{GeV})}{0.44065} \theta_{bend}$$

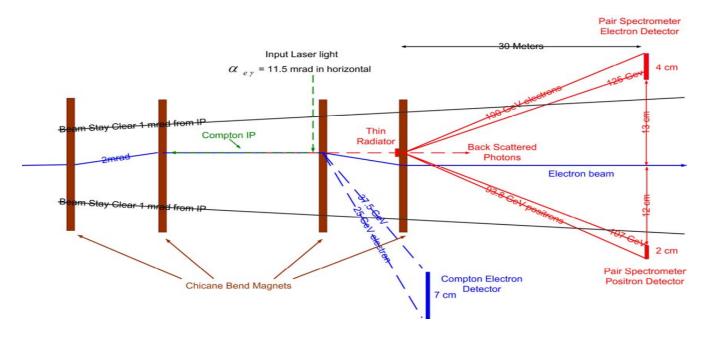
(expect similar size depolarization from Sokolov-Ternov)


$$\Delta P_{IP}^{lum-wt,BMT} \approx \frac{1}{4} \Delta P_{IP}^{BMT}$$
$$\approx \frac{1}{4} \cdot \left(1 - \cos\left[\sigma(\theta_{spin})\right]\right)$$

Parameter	NLC-500	TESLA-500	NLC-500	TESLA-500	
	e+e-	e+e-	e-e-	e-e-	
$\sigma(\theta_x)$	228 μrad 275 μrad 182		182 μrad	198 µrad	
$\sigma(\theta_y)$	85 µrad	56 μrad	185 µrad	236 μrad	
$\Delta P_{ m IP}^{ m lum-wt,BMT}$	0.24%	0.32%	0.36%	0.45%	
ΔE (beamsstr.)	6.2%	4.2%	5.2%	3.5%	
Chicane losses*	<0.1%	<0.1%	0.3%	<0.1%	

^{*%} beam loss before mid-chicane at Compton IP

Beta function and Dispersion In the Extraction Line


Location for Compton IP at mid-chicane

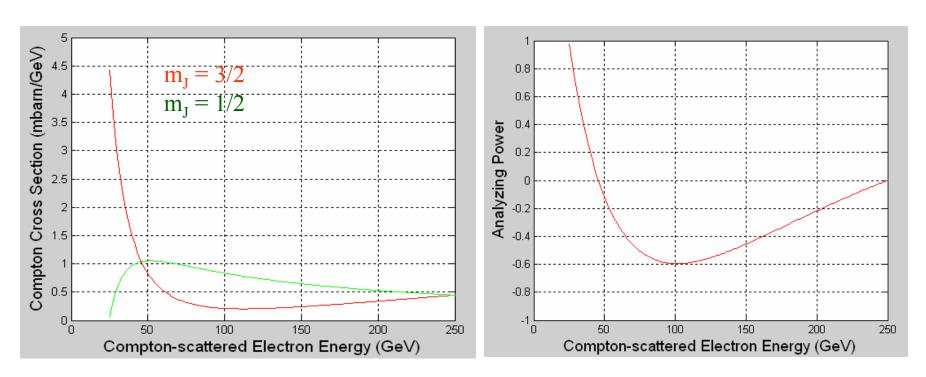
$\left x \right\rangle_{chicane} = R \left x \right\rangle_{IP}$	D
x,x',y,y',z,dE/E) with units	R =
n, rad, m, rad, m, dimensionle	ess)

-1.68	0	0.012	0	0	0
0.0056	-0.595	0	0.004	0	0
-0.016	0	-2.26	0	0	0.02
0	-0.003	-0.099	-0.443	0	0
0	0	-0.002	-0.009	1	0
0	0	0	0	0	1

Angular magnification is close to 0.5 and reduces spin diffusion correction to extract lum-wted polarization from polarimeter measurement.

Extraction Line Compton Polarimeter

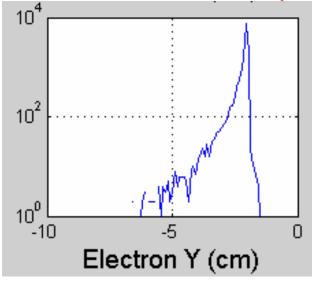
Primary polarimeter is Compton polarimeter

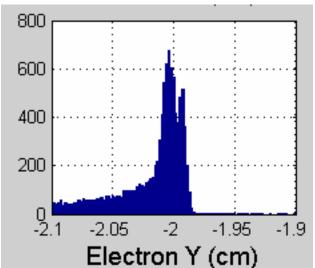

- Compton IP 60 meters downstream of e⁺e⁻ IP
- 2mrad bend angle from analyzing magnet
- segmented gas Cherenkov detector, similar to SLD design
- multi-Compton mode with high power pulsed laser at ~17Hz

Also considering,

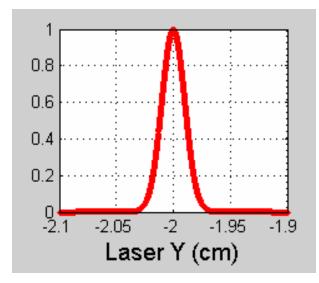
- pair spectrometer for backscattered photon measurement
- alternate detector technologies (ex. quartz fiber)

Compton-scattering Cross Section and Analyzing Power


250 GeV electron beam 532 nm laser

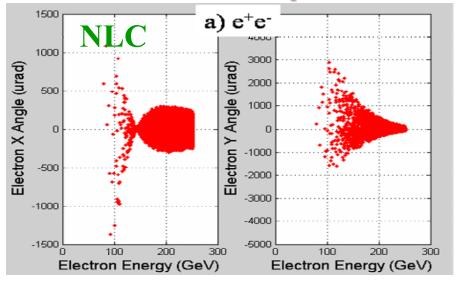


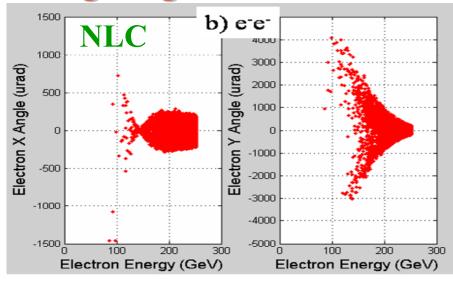
Compton edge is at 25.1 GeV.

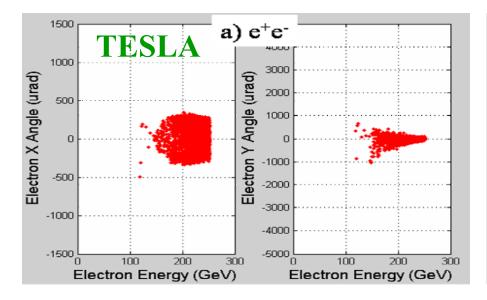

6

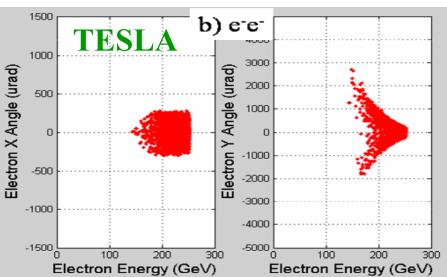
Electron and Laser Beams at Compton IP (NLC e+e- collisions)

Disrupted electron beam

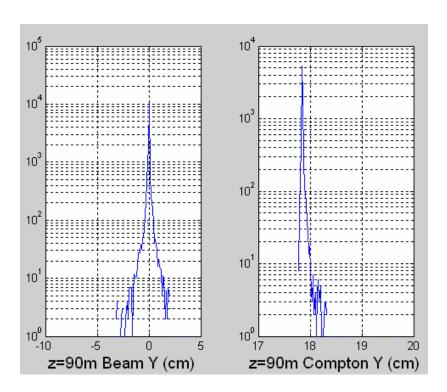


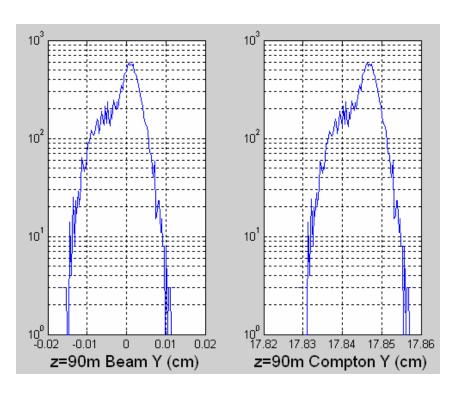

Laser beam


Compton scattering rate at 25.1 GeV kinematic endpoint,


$$R = \frac{500 \ scattered \ electrons}{GeV} \bullet \left(\frac{100 \ \mu m}{\sigma_y}\right) \bullet \left(\frac{11.5 mrad}{\theta_{cross}}\right) \bullet \left(\frac{E_{laser}}{100 mJ}\right) \bullet \left(\frac{2 n \sec}{t_{FWHM}}\right)$$

Comparing e⁺e⁻ and e⁻e⁻ angular distributions at Compton IP for outgoing e⁻ beam





Beam electron and Compton-edge electron distributions at "detector" (after chicane) (NLC e+e- collisions)

Colliding beams; includes disruption

No collisions; no disruption

(1mrad stayclear for beamstrahlung photons is at $y = \pm 9$ cm)

Good separation between Compton edge electrons and disrupted beam

Spin Precession and Depolarization

Spin precession:
$$\theta_{spin} = \frac{E(\text{GeV})}{0.44065} \theta_{bend}$$

BMT depolarization: $\Delta P^{BMT} \approx 1 - \cos[\sigma(\theta_{spin})]$

Lum-wted depolarization (BMT + S-T spin flips):

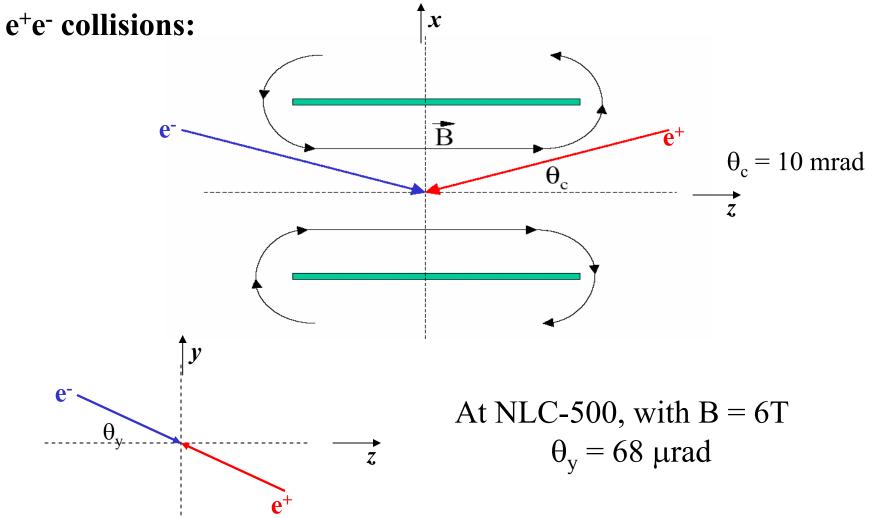
$$\Delta P_{IP}^{lum-wt} \approx \Delta P_{IP}^{lum-wt,BMT} + \Delta P_{IP}^{lum-wt,ST}$$

$$\Delta P_{IP}^{lum-wt} \approx \frac{1}{4} \left(\Delta P_{IP}^{BMT} + \Delta P_{IP}^{ST} \right)$$

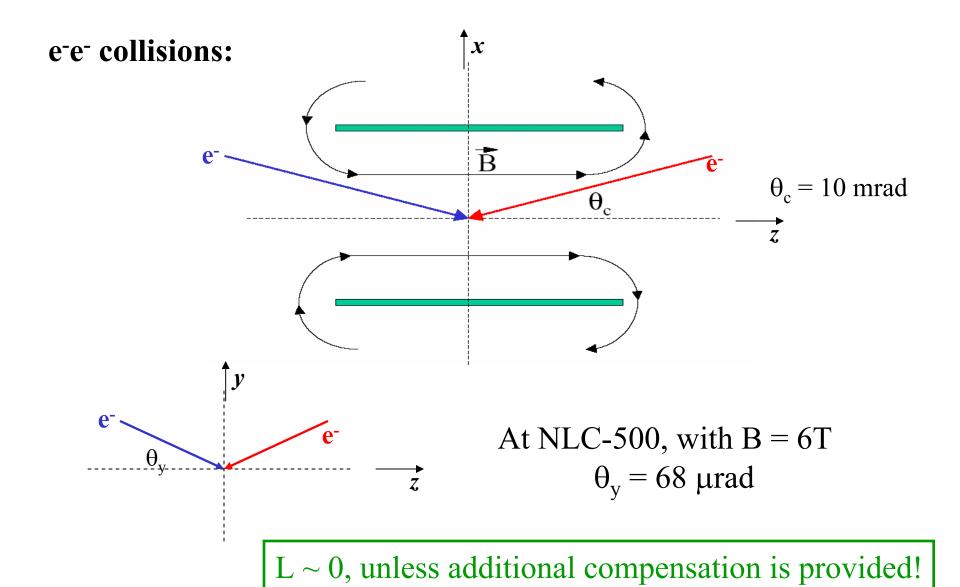
Compton polarimeter measurement (extraction line only; comparing collisions and no collisions):

$$\Delta P_{CIP}^{meas} \approx \Delta P_{CIP}^{BMT} + \Delta P_{IP}^{ST}$$

Extraction Line Compton measurement


$$\Delta P_{CIP}^{meas} \approx \Delta P_{CIP}^{BMT} + \Delta P_{IP}^{ST}$$

Use known R-Transport matrix from IP to CIP and either measured or simulated results for disruption angles at IP


 \longrightarrow Then can infer ΔP_{IP}^{ST} from ΔP_{CIP}^{meas}

IP Crossing Angle and Solenoid Effects

(Reference: Tenenbaum, Irwin and Raubenheimer PRSTAB 6:061001,2003)

IP Crossing Angle and Solenoid Effects

IP Crossing Angle and Solenoid Effects

Spin precession and misalignment of Compton IP to collider IP:

- will have 68 µrad bend angle between Compton IP (upstream or downstream) and collider IP
- angle is small compared to disruption angles, but still undesirable

Three reasons to compensate the resulting vertical steering:

- want no vertical crossing angle for e⁻e⁻ collisions
- alignment of extraction line should be energy-independent
- want no net bend angle wrt upstream or downstream polarimeters

Possible solutions (under study):

- additional vertical bends
- serpentine solenoid winding (add vertical bend to solenoid field; BNL work)

Summary

Compton IP at mid-chicane in extraction line allows good separation between Compton-edge electrons and disrupted electron beam at detector.

More low energy disrupted electrons for NLC than for TESLA. Results in 0.3% beam loss before chicane mid-point for NLC e⁻e⁻. Investigating collimation of low energy tail to reduce energy bandpass to 50% in extraction line.

Extraction line Compton polarimeter can allow separate determination of BMT and S-T depolarization effects.

Need to design compensation for vertical bend when there is a crossing angle.

Easy to do for extraction line compensation. More care is needed for upstream compensation to preserve low emittance beams and minimize backgrounds for LC Detector.