International Linear Collider Workshop, Paris, 2004

Central Tracker R&D in Asia Norik Khalatyan

KEK

Japan

Collaboration

•KEK, NooKooDai University, University of Tsukuba, Kinki Univ., Osaka Univ. and Mindanao Univ.

Norik Khalatyan, KEK, Japan

Basic Design Parameters

For 2T option

 $\sigma_{xy} = 85 \mu m \longrightarrow (\text{cool gas} + \text{mini-jet cell})$ $l = R_{\text{out}} - R_{\text{in}}$ = 230(outer cylinder) - 45(support tube) = 185cmn = 80B = 2TL = 460cm (full lever arm above 45°) $\sigma_z = \sigma_{xy} / \tan \alpha_{\text{stereo}} \simeq 1 mm$ $\tan \alpha_{\text{stereo}} \simeq 0.1 \longrightarrow \text{mini-jet cell}$ $\sigma_{T_0} \simeq \frac{\sigma_{xy}}{v_{\text{drift}}\sqrt{n}} \lesssim 1.4nsec$

Norik Khalatyan, KEK, Japan

4.6m Test chamber (1993)

Wire Sag measurementCosmic Ray Test

Baby chamber (1996)

Single track study
Oxygen contamination study

•dE/dx measurement

Two track separation study

Norik Khalatyan, KEK, Japan LCWS2004 Paris, 18-23 April, 2004

6

10

37)

6

6)

6

6

The wire configuration of the Baby test chamber

Electron drift lines and isochronous lines

NIM A383 (96), 391. Measurement Principle Gravitational Sag Rotate & measure

Norik Khalatyan, KEK, Japan

Norik Khalatyan, KEK, Japan

Oxygen Concentration v.s. Resolution

For sufficiently low Oxygen contamination the average spatial resolution of 90 microns is possible.

Norik Khalatyan, KEK, Japan

2-Track Separation Study

Typical 2-Track Event (Tanashi: Normal Incidence) Up stream

Very successful case

It looks possible to separate 2 tracks as close as 1mm to each other!

Norik Khalatyan, KEK, Down Strews2004 Paris, 18-23 April, Japan 2004

Lorentz Angle Measurement

NIM A479 (02) 278

Norik Khalatyan, KEK, Japan

9

Norik Khalatyan, KEK, Japan

Shrink Factor

NIM A428 (99) 403

How does this affect gas gain and operational stability?

Gain variation < 25% (4.6m)

Norik Khalatyan, KEK, Japan

Norik Khalatyan, KEK, Japan

> T0 from Helix Fit (axial+stereo)

We can determine TO with ~2.2ns accuracy!

Norik Khalatyan, KEK, Japan

What We Have Achieved

- Gravitational and Electrostatic Sags (4.6m Test Chamber): NIM A383 (96) 391
- Cosmic Ray Tests (4.6m Test Chamber): NIM A441 (00) 393
- Designing of Stereo-Wire Geometry: NIM A428 (99) 403
- Gas Gain Measurement: NIM A447 (00) 459
- Lorentz Angle Measurement: NIM A479 (02) 278
- > Effects of Oxygen Contamination: NIM A516 (04) 377
- > dE/dx Measurement: Draft
- > 2-Track Separation (Baby Chamber + Beam): Draft
- > Time stamping for CDC: Draft

•The proof-of-principle phase of the Cylindrical Drift Chamber (CDC) R&D had essentially been completed.

•CDC can be used for "Warm" machine as a main tracker.

Norik Khalatyan, KEK, Japan