Higgs Coupling Measurements at a 1 TeV LC

Tim Barklow SLAC April 20, 2004

Higgs Branching Fractions from TESLA TDR

Channel	$M_H = 120 \mathrm{GeV}$	$M_H = 140 \mathrm{GeV}$	$M_H = 160 \mathrm{GeV}$
$H^0/h^0 \rightarrow b\bar{b}$	± 0.024	± 0.026	± 0.065
$H^0/h^0 \rightarrow c \bar{c}$	± 0.083	± 0.190	
$H^0/h^0 \rightarrow gg$	± 0.055	± 0.140	
$H^0/h^0 \to \tau^+ \tau^-$	± 0.050	± 0.080	

Table 2.2.5: Relative accuracy in the determination of Higgs boson branching ratios for $500 \, \text{fb}^{-1}$ at $\sqrt{s} = 350 \, \text{GeV}$.

Channel	$M_H = 120 \mathrm{GeV}$	$140\mathrm{GeV}$	$160\mathrm{GeV}$
$\sigma(e^+e^- \to H^0 Z)$	± 0.025	± 0.027	± 0.030
$H^0 \to WW^*$	± 0.051	± 0.025	± 0.021
$H^0 \rightarrow Z Z^*$			± 0.169

Table 2.2.3: Relative accuracy in the determination of the SM Higgs boson production cross-sections and decay rates into gauge bosons for $500 \, \text{fb}^{-1}$ at $\sqrt{s} = 350 \, \text{GeV}$ and $500 \, \text{GeV}$.

Take cue from Battaglia & DeRoeck results for $B_{h \to \mu\mu}$ at CLIC and investigate branching fraction measurements in WW fusion at a 1 TeV LC.

$e_{pol}^{-} = -80\%$	L = 500 (10)	$(000) fb^{-1}$	for \sqrt{s}	=350(10)	00) GeV:	
		Higgs Mass (GeV)				
$\sqrt{s} \; (\text{GeV})$	$e_{\rm pol}^+$ (%)	120	140	160	200	
350	0	110280	89150	69975	37385	
350	+50	159115	128520	100800	53775	
1000	0	386550	350690	317530	259190	
1000	+50	569750	516830	467900	382070	

Results presented for $h \rightarrow b\overline{b}, W^+W^-, gg, \gamma\gamma, ZZ$

No results for $h \to c\overline{c}, \tau^+\tau^-$ since detailed charm-tagging beyond scope and Higgs mass resolution for $h \to \tau^+\tau^-$ severely degraded by neutrinos.

Monte Carlo Simulation

- WHIZARD Monte Carlo is used to generate all 0,2,4,6-fermion and top quark dominated 8-fermion processes. The CIRCE parameterization of the NLC design at Ecm=1TeV is used to simulated beamstrahlung.
- Higgs production and decay to b-quarks and taus automatically included in WHIZARD 4-fermion simulation. For other Higgs decay modes WHIZARD simulates $e^+e^- \rightarrow f \overline{f} h$ and PYTHIA then peforms the decays.
- PYTHIA is used for final state QED & QCD parton showering, fragmentation, particle decay.
- 100% electron and positron polarization is assumed in all event generation. Data sets are combined to simulate -80% electron and 50% positron polarization.
- SIMDET V4.0 simulation of the TESLA detector is used for detector simulation.

 $h \rightarrow bh$

Require:

 $|\cos\theta_{thrust}| < 0.95$ $20 < PT_{vis} < 500 \text{ GeV}$ $100 < E_{vis} < 400 \text{ GeV}$ $N_{isolated \ leptons} = 0$ $2 \le N_{iets} \le 3$ $7 \le N_{chg} \le 19$ $7 \le N_{imp} \le 19$ where N_{imp} is number of large impact parameter charged tracks $M_{h} - 10 \text{ GeV} < M_{vis} < M_{h} + 6 \text{ GeV}$

$$M_{h} = 120 \text{ GeV}$$
$$\sqrt{s} = 1 \text{ TeV}$$
$$L = 1 ab^{-1}$$

Background passing cuts (white histogram) is mostly

 $h \rightarrow bb$

 $e^+e^- \rightarrow evW$ eeZvvZ

Red histogram:

Green histogram: $h \to c\bar{c}$ (70%) gg (20%) WW^* (5%) ZZ^* (5%)

$$e^+e^- \rightarrow v_e \overline{v_e} h$$

 $|\rightarrow b\overline{b}$

 $M_{h} = 200 \, GeV$

All 2,4,6-fermion and top-resonance 8-fermion backgrounds included

Background passing cuts (white histogram) is mostly

 $e^+e^- \rightarrow e^+e^-W^+W^-$

Red histogram:
$$h \rightarrow bb$$

Green histogram: $h \rightarrow WW$, ZZ

 $h \rightarrow \gamma \gamma$

Require:

 $|\cos\theta_{thrust}| < 0.95$ $20 < PT_{vis} < 500 \text{ GeV}$ $100 < E_{vis} < 400 \text{ GeV}$ $N_{isolated \ leptons} = 0$ $N_{iets} = 2$ $N_{chg} = 0$ $N_{imn} = 0$ $M_{h} - 2 \text{ GeV} < M_{vis} < M_{h} + 1 \text{ GeV}$

$$e^+e^- \rightarrow v_e \overline{v_e} h$$

 $| \rightarrow \gamma \gamma$

 $M_{h} = 120 \text{ GeV}$ $\sqrt{s} = 1 \text{ TeV}$ $L = 1 ab^{-1}$

All 2,4,6-fermion and top-resonance 8-fermion backgrounds included

Non-Higgs background (white histogram) is mostly

$$e^+e^- \rightarrow \nu\nu\gamma\gamma$$

Red histogram: $h \rightarrow \gamma \gamma$

$$e^+e^- \rightarrow v_e \overline{v_e} h$$

 $| \rightarrow \gamma \gamma$

$$M_{h} = 160 \text{ GeV}$$
$$\sqrt{s} = 1 \text{ TeV}$$
$$L = 1 ab^{-1}$$

Non-Higgs background (white histogram) is mostly

$$e^+e^- \rightarrow \nu\nu\gamma\gamma$$

Red histogram: $h \rightarrow \gamma \gamma$

 $h \rightarrow WW$

Require:

 $|\cos\theta_{thrust}| < 0.95$ $20 < PT_{vis} < 500 \text{ GeV}$ $100 < E_{vis} < 400 \text{ GeV}$ $N_{isolated \ leptons} = 0$ $4 \le N_{iets} \le 5$ $16 \le N_{chg} \le 44$ $N_{imp} \leq 6$ $M_{h} - 10 \text{ GeV} < M_{vis} < M_{h} + 6 \text{ GeV}$

$$M_{h} = 120 \text{ GeV}$$
$$\sqrt{s} = 1 \text{ TeV}$$
$$L = 1 ab^{-1}$$

Non-Higgs background (white histogram) is mostly

$$e^+e^- \rightarrow evW$$

 $(W\gamma \rightarrow ud)$

Red histogram: $h \rightarrow WW^*$

Green histogram: $h \rightarrow b\overline{b} (14\%) c\overline{c} (12\%) ZZ^*(12\%)$

$$e^+e^- \rightarrow v_e \overline{v_e} h$$

 $|\rightarrow WW^*$

$$M_{h} = 120 \text{ GeV}$$
$$\sqrt{s} = 1 \text{ TeV}$$
$$L = 1 ab^{-1}$$

Non-Higgs background (white histogram) is mostly

 $e^+e^- \rightarrow evW$ $(W\gamma \rightarrow ud)$

Red histogram: $h \rightarrow WW^*$

Blue histogram: $h \rightarrow gg$

Green histogram: $h \rightarrow b\overline{b}, \ c\overline{c}, \ ZZ^*$

Statistical Accuracy for $\sigma \bullet B_{xx}$ Assuming

$$e_{pol}^{-} = -80\%$$
 $e_{pol}^{+} = +50\%$ $L = 1000 \ fb^{-1}$ $\sqrt{s} = 1000 \ GeV$

	Higgs Mass (GeV)					
	115	120	140	160	200	
$\Delta(\sigma \cdot B_{bb})/(\sigma \cdot B_{bb})$	± 0.003	± 0.004	± 0.005	± 0.018	± 0.090	
$\Delta(\sigma \cdot B_{WW})/(\sigma \cdot B_{WW})$	± 0.021	± 0.013	± 0.005	± 0.004	± 0.005	
$\Delta(\sigma \cdot B_{gg})/(\sigma \cdot B_{gg})$	± 0.014	± 0.015	± 0.025	± 0.145		
$\Delta(\sigma \cdot B_{\gamma\gamma})/(\sigma \cdot B_{\gamma\gamma})$	± 0.053	± 0.051	± 0.059	± 0.237		
$\Delta(\sigma \cdot B_{ZZ})/(\sigma \cdot B_{ZZ})$					± 0.013	

Convert $\sigma \bullet B_{xx}$ to B_{xx} , Γ_{tot} Using $b\overline{b}$, WWBranching Fractions Measured at Ecm=350 GeV

$$B_{xx} = (\sigma \cdot B_{xx})(\sigma \cdot B_{WW})^{-1}B_{WW}^* = (\sigma \cdot B_{xx})(\sigma \cdot B_{bb})^{-1}B_{bb}^*$$

$$\Gamma_{tot} \propto (\sigma \cdot B_{bb})(B_{bb}^*)^{-1}(B_{WW}^*)^{-1} = (\sigma \cdot B_{bb})^2(\sigma \cdot B_{WW})^{-1}(B_{bb}^*)^{-2}$$

Assumed errors on B_{bb}^* , B_{WW}^* measured at Ecm=350 GeV:

	Higgs Mass (GeV)					
	115	120	140	160	200	
$\Delta B_{bb}^*/B_{bb}^*$	± 0.015	± 0.017	± 0.026	± 0.065	± 0.340	
$\Delta B^*_{WW}/B^*_{WW}$	± 0.061	± 0.051	± 0.025	± 0.010	± 0.025	

Use Direct Method (J.-C. Brient, LC-PHSM-2002-003) when branching fraction is large because binomial statistics reduces error by $\sqrt{1-B_{xx}}$

Statistical Accuracy for B_{xx} , Γ_{tot} Assuming $e_{pol}^{-} = -80\% \quad e_{pol}^{+} = +50\% \quad L = 1000 \ fb^{-1} \quad \sqrt{s} = 1000 \ GeV$ and errors on B_{bb}^{*} , B_{WW}^{*} from previous slide

	Higgs Mass (GeV)					
	115	120	140	160	200	
$\Delta B_{bb}/B_{bb}$	± 0.015	± 0.016	± 0.018	± 0.020	± 0.090	
$\Delta B_{WW}/B_{WW}$	± 0.024	± 0.020	± 0.018	± 0.010	± 0.025	
$\Delta B_{gg}/B_{gg}$	± 0.021	± 0.023	± 0.035	± 0.146		
$\Delta B_{\gamma\gamma}/B_{\gamma\gamma}$	± 0.055	± 0.054	± 0.062	± 0.237		
$\Delta\Gamma_{tot}/\Gamma_{tot}$	± 0.035	± 0.034	± 0.036	± 0.020	± 0.050	

Channel	$M_H = 120 \mathrm{GeV}$	$M_H = 140 \mathrm{GeV}$	$M_H =$	$160\mathrm{GeV}$
$H^0/h^0 \to b\bar{b}$	± 0.024	± 0.026	± 0	0.065
$H^0/h^0 \rightarrow c \bar{c}$	± 0.083	± 0.190		
$H^0/h^0 \rightarrow gg$	± 0.055	± 0.140		
$H^0/h^0 \to \tau^+ \tau^-$	± 0.050	± 0.080		
$\Gamma_{H \to X}$	$BR(H \to X)$	$M_H = 120 \mathrm{GeV}$	$140\mathrm{GeV}$	$160\mathrm{GeV}$
$WW = WW\nu\nu$	$H^0 \to WW$	± 0.061	± 0.045	± 0.134

TESLA TDR:

лпс	ΔΝΙΔΙ	VCIC	

THIS ANAL ISIS.		Higgs Mass (GeV)					
	115	120	140	160	200		
$\Delta B_{bb}/B_{bb}$	± 0.015	± 0.016	± 0.018	± 0.020	± 0.090		
$\Delta B_{WW}/B_{WW}$	± 0.024	± 0.020	± 0.018	± 0.010	± 0.025		
$\Delta B_{gg}/B_{gg}$	± 0.021	± 0.023	± 0.035	± 0.146			
$\Delta B_{\gamma\gamma}/B_{\gamma\gamma}$	± 0.055	± 0.054	± 0.062	± 0.237			
$\Delta\Gamma_{tot}/\Gamma_{tot}$	± 0.035	± 0.034	± 0.036	± 0.020	± 0.050		

Assumed errors	Higgs Mass (GeV)				
from Ecm=350 GeV:	115	120	140	160	200
$\Delta B_{bb}^*/B_{bb}^*$	± 0.015	± 0.017	± 0.026	± 0.065	± 0.340
$\Delta B^*_{WW}/B^*_{WW}$	± 0.061	± 0.051	± 0.025	± 0.010	± 0.025

THIS ANALYSIS		Higg	s Mass $(C$	$\mathrm{GeV})$	
	115	120	140	160	200
$\Delta B_{bb}/B_{bb}$	± 0.015	± 0.016	± 0.018	± 0.020	± 0.090
$\Delta B_{WW}/B_{WW}$	± 0.024	± 0.020	± 0.018	± 0.010	± 0.025

Try to use ZZ fusion to measure Γ_{ZZ} Optimize signal for $e^+e^- \rightarrow e^+e^-h$ at 1 TeV using only the final state e^+e^- Take the largest mass e^+e^- pair in the event and require:

> $0.8 < \cos \theta_{e^-} < 0.9975$ $-0.9975 < \cos \theta_{e^+} < -0.8$ $|\cos \theta_{ee}| < 0.98$ $650 \text{ GeV} < M_{ee} < 870 \text{ GeV}$ $0.8 < a copl_{ee}$

 $e^+e^- \rightarrow e^+e^-h$

$$M_{h} = 115 \text{ GeV}$$
$$\sqrt{s} = 1 \text{ TeV}$$
$$L = 1 ab^{-1}$$

Non-Higgs background (white histogram) is mostly

 e^+e^-

Include background from $\gamma\gamma \rightarrow$ hadrons

$$e^+e^- \rightarrow v_e \overline{v_e} h$$
 $M_h = 115 \text{ GeV}$ $\sqrt{s} = 1 \text{ TeV}$

Remove eflow objects with $p_T < 0.5$ GeV or $|\cos\theta| > 0.98$

Summary

- Couplings of Higgs bosons can continue to be measured as the energy of a LC is upgraded to 1 TeV.
- Higgs event rate is very large at 1 TeV and rare decay modes inaccessible at 350 GeV can be probed such as b quark decays for Mh=200 GeV and gluon-gluon, gamma-gamma decays for Mh=140 GeV. Branching ratio errors are also improved for decay modes with moderate branching fractions.
- Higgs branching ratio to b quarks or to W W measured with the direct method at Ecm=350 GeV should replace the Zh cross section as the parameter used to convert (sigma X BR) to branching ratios.
- The measurement of the Higgs BR to charm quarks at Ecm=1 TeV would be an interesting topic for charm tagging experts