

Top-Higgs Yukawa coupling measurement at TESLA

A. Gay, A. Besson, M. Winter

- Principle of the coupling measurement
- Background and tools
- Channels studied and results
- 6 fermions background
- Extensions of the analysis

Principle of the coupling measurement

22 Amil 2004

ireS

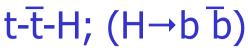
Deccen I CWC04

Background and tools

Background:

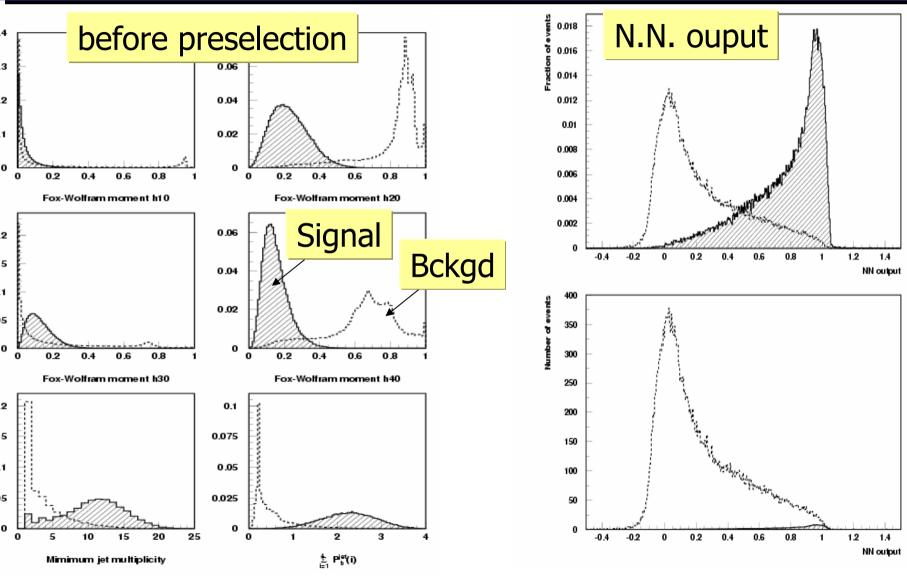
Final State	σ (fb)
q-qbar (u,d,s,c,b)	~1600
t-tbar	~300
W+W-	~4300
ZZ	~240
t-tbar-Z	~4.3

Generation/simulation


- t-tbar-H and t-tbar-Z generated with COMPHEP v41.10 + Pythia 6.158
- Other Bckgds generated with Pythia
- Simulated with SIMDET v4.

B-tag

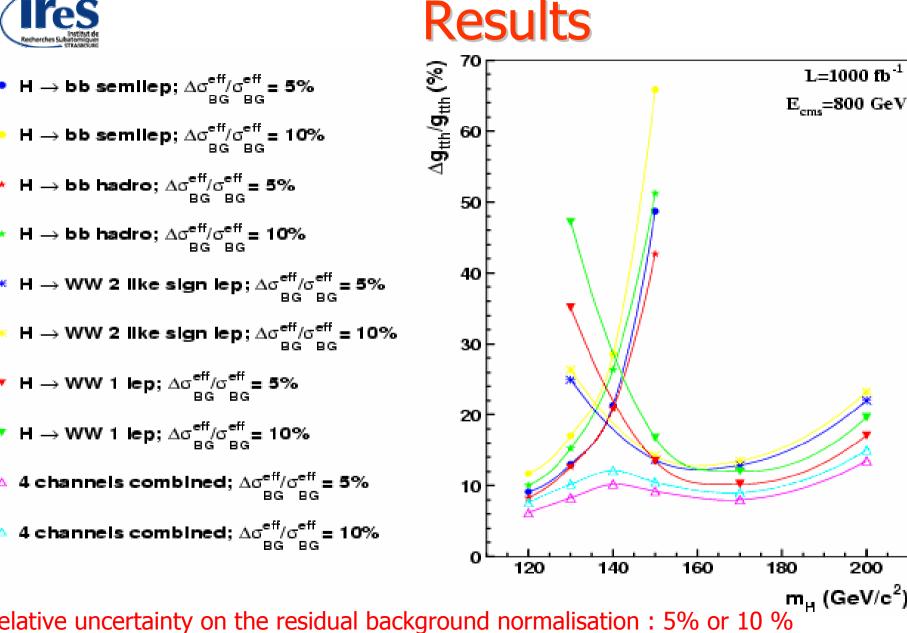
- NN based, including Zvtop, impact parameter joint probability tag, mass and momentum of the vertex, etc.
 - ➢ Implemented in SIMDET by T.Kuhl



Channels studied

- Semi-leptonic channel \rightarrow 4b2ql_V
 - > BR(ttbarH \rightarrow 4b2qlv) \approx 43.9% x BR(H \rightarrow b-bbar)
- Hadronic channel → 4b4q
 - > BR(ttbarH → 4b4q) \approx 45.6% x BR(H → b-bbar)
- t-t-H; (H→W+W-)
 - 2 like sign leptons + 6 jets channel \rightarrow 2l^{+/-}2v4q2b
 - > BR(ttbarH → $2I^{+/-}2_{\nu}4q2b$) ≈ 10% x BR(H → W⁺W⁻)
 - 1 lepton + 8 jets channel \rightarrow lv6q2b
 - > BR(ttbarH → I_V6q2b) ≈ 40% x BR(H → W⁺W⁻)
- Neural Net selection
 - Thrust, number of jets, Fox-Wolfram M., b-tag prob., etc.

Selection ($h \rightarrow b$ bar, semi leptonic channel)



22 A mil 2004

lleS

A Dessen I CWC04

22 A muil 2004

A Dessey I CWCOA

6 fermions background (1)

- Previous results don't include 6 fermions processes
- Cross-sections / generation with WHIZARD
 - At the partonic level
 - Include ISR and beamstrahlung
 - Hadronization and FSR done by PYTHIA
- Some processes receive contributions of resonant diagrams already taken into account with
 - t-tbar, W+W-, ZZ, t-tbar-Z, t-tbar-H
 - In this case these contributions are substracted from the total cross-section to avoid double counting
- Cross-section calculation and generation
 - Difficult and time consuming
 - Ambiguities arise when parton pairs are defined for fragmentation
 - > Loss of resolution on the g_{ttH} measurement due to 6 f. background is an estimate

Hadronic channel ($m_H = 120 \text{ GeV/c}^2$)

Final state	$\sigma(fb)$	ϵ_{sel}
$b\overline{b}b\overline{b}b\overline{b}b\overline{b}$	$6.4 \cdot 10^{-3}$	5.8%
$b\overline{b}b\overline{b}q\overline{q}~(q=u,d)$	$1.2\cdot 10^{-1}$	1.6%
$b\overline{b}b\overline{b}s\overline{s}$	$6.3 \cdot 10^{-2}$	1.8%
$b\overline{b}b\overline{b}c\overline{c}$	$5.1 \cdot 10^{-2}$	2.0%
$b\overline{b}b\overline{b}t\overline{t}$	$6.9 \cdot 10^{-3}$	31.8%
$b\overline{b}q\overline{q}t\overline{t}~(q=u,d,s)$	$8.9 \cdot 10^{-3}$	12.5%
$b\overline{b}c\overline{c}t\overline{t}$	$3.5 \cdot 10^{-3}$	17.2%
$b\overline{b}t\overline{b}d\overline{u}$ *	$\sim 1\cdot 10^{-2}$	14.0%
$b\overline{b}t\overline{b}\mu\overline{ u}$ *	$\sim 3\cdot 10^{-3}$	1.2%

 $\Delta \sigma^{eff}_{BG} / \sigma^{eff}_{BG} = 5 \%$

6 fermions background (3)

Loss of resolution in the hadronic channel ($m_H = 120 \text{ GeV/c}^2$)

$\frac{\Delta \sigma^{eff}_{BG}}{\sigma^{eff}_{BG}}$	$\frac{\Delta g_{ttH}}{g_{ttH}}$ (without 6f)	$\frac{\Delta g_{ttH}}{g_{ttH}}$ (with 6f)
5%	8.3%	$\sim 8.5\%$
10%	10.1%	$\sim 10.5\%$

Loss of resolution in the semileptonic channel

$\frac{\Delta \sigma^{eff}_{BG}}{\sigma^{eff}_{BG}}$	$\frac{\Delta g_{ttH}}{g_{ttH}}$ (without 6f)	$\frac{\Delta g_{ttH}}{g_{ttH}}$ (with 6f)
5%	9.1%	$\sim 9.3\%$
10%	11.7%	$\sim 12.1\%$

No significant effect

- New top mass from TeVatron: $-m_t = 178.0 \pm 4.3 \text{ GeV/c}^2$
 - Changes the cross-sections to less than ~1%
 → Higgs mass limit ~ 250/340 GeV/c² @ 95/99% c.l.
 → Extension of the analysis to m_H $\stackrel{\circ}{=}$ 300 GeV/c²
- Include the $(H \rightarrow ZZ)$ channel
 - $-26\% \le Br \le 30\%$ for (200 $\le m_H \le 300$ GeV/c²)
 - 2 leptons + 8 jets channel \rightarrow l⁺l⁻6q2b

- @ the LC, the precision of the measurement of the to Yukawa Coupling will be better than $\sim 10 \%$
- if $m_H \le 190 \text{ GeV/c}^2$
- For a light Higgs ($m_H \triangleq 120 \text{ GeV/c}^2$)
- Precision ~ 5-6 %
- First 6-fermions background simulations affect only marginaly the precision of the measurement
- The extension of the analysis is in progress (high masses, HZZ channel)

2 like sign lep. + 6 jets channel ($m_H = 150 \text{ GeV/c}^2$)

Final state	$\sigma(fb)$	ϵ_{sel}
$b\overline{b}u\overline{d}e^-\overline{ u}_e$ *	~ 1.5	$8.4 \cdot 10^{-3}\%$
$b\overline{b}t\overline{b}d\overline{u}$ *	$\sim 6\cdot 10^{-3}$	< 0.2%
$b\overline{b}t\overline{b}\mu\overline{ u}$ *	$\sim 1.5\cdot 10^{-3}$	0.4%
$tar{t}q\overline{q}q'\overline{q}'\;(q,q'=u,d,s)$	$1.2\cdot 10^{-2}$	0.2%
$q \overline{q} t \overline{b} l \overline{\nu}_l \ (q = u, d, s, c; \ l = e^-, \mu^-) \ ^*$	$\sim 7.6\cdot 10^{-2}$	0.2%
$q\overline{q}t\overline{b}d\overline{u}\;(q=u,d,s,c)\;^*$	$\sim 1.3 \cdot 10^{-1}$	0.05%

* Contribution of resonant reactions was subtracted The selection efficiency is shown for $\frac{\Delta \sigma_{BG}^{eff}}{\sigma_{BG}^{eff}} = 5\%$

$\frac{\Delta \sigma^{eff}_{BG}}{\sigma^{eff}_{BG}}$	$\frac{\Delta g_{ttH}}{g_{ttH}}$ (without 6f)	$\frac{\Delta g_{ttH}}{g_{ttH}}$ (with 6f)
5%	13.6%	$\sim 13.9\%$
10%	14.2%	$\sim 14.5\%$

6 fermions background (5)

1 lep. + 8jets channel ($m_H = 150 \text{ GeV/c}^2$)

Final state	$\sigma(fb)$	ϵ_{sel}
$b\overline{b}u\overline{d}e^-\overline{ u}_e$ *	~ 1.5	0.04%
$b\overline{b}t\overline{b}d\overline{u}$ *	$\sim 6\cdot 10^{-3}$	2.4%
$b\overline{b}t\overline{b}\mu\overline{ u}$ *	$\sim 1.5 \cdot 10^{-3}$	3.4%
$t ar{t} q \overline{q} q' \overline{q}' \; (q,q'=u,d,s)$	$1.2\cdot 10^{-2}$	7.6%
$q\overline{q}t\overline{b}l\overline{ u}~(q=u,d,s,c;~l=e^-,\mu^-)$ *	$\sim 7.6\cdot 10^{-2}$	1.7%
$q\overline{q}t\overline{b}d\overline{u}\left(q=u,d,s,c ight)$ *	$\sim 1.3 \cdot 10^{-1}$	1.2%

* Contribution of resonant reactions was subtracted The selection efficiency is shown for $\frac{\Delta \sigma_{BG}^{eff}}{\sigma_{BG}^{eff}} = 5\%$

$\frac{\Delta \sigma^{eff}_{BG}}{\sigma^{eff}_{BG}}$	$\frac{\Delta g_{ttH}}{g_{ttH}}$ (without 6f)	$\frac{\Delta g_{ttH}}{g_{ttH}}$ (with 6f)
5%	13.5%	$\sim 14\%$
10%	16.8%	$\sim 17.5\%$