

R&D for RPC detectors

S.Calcaterra¹, R.De Sangro¹, D.Gamba^{3,5}, G.Mannocchi^{1,4}, P.Patteri¹, P.Picchi^{1,3}, M.Piccolo¹, S.Ragazzi², N.Redaelli², L.Satta^{1,6}, <u>T.Tabarelli de Fatis</u>², A.Tonazzo^{2,7}, P.Trapani^{3,5}, G.C.Trinchero^{4,5}

(The CaPiRe collaboration)

¹ INFN, Laboratori Nazionali di Frascati, Frascati, Italy;
 ² Università di Milano Bicocca & INFN, Milano, Italy;
 ³ Università di Torino, Torino, Italy;
 ⁴ CNR, IFSI Sezione di Torino, Torino, Italy;
 ⁵ INFN, Sezione di Torino, Torino, Italy;
 ⁶ Università di Roma, Dipartimento di Energetica, Roma, Italy;
 ⁷ Now at Università di Roma 3, Roma, Italy;

- RPC with glass electrodes
- The R&D programme of the CaPiRe experiment
 - Large area glass RPC prototypes
 - Rate capability measurements
 - Long term stability studies
- Conclusions and outlook

RPC with glass electrodes

- Advantages of glass electrodes
 - high electrode planarity (*float* glass)
 - high stability of the electrode resistivity
 - Relatively inexpensive and commercially available
 - One successful application on large scale (~2000 m²) at colliders (BELLE experiment)
- Disadvantages
 - high volume resistivity (limited rate capability)
 - absence of industrial standards for mass production

CaPiRe R&D programme

- Design and engineering of large area glass RPC prototypes suited for mass production
 - Test industrial procedures for detector assembly
 - Adoption of techniques derived from glass industry
 - Test prototypes performance and reproducibility
- Search for electrode materials and/or working conditions to overcome the rate capability limitations of glass RPC

Glass RPC prototypes

- RPC prototypes produced in collaboration with General Tecnica:
 - 100 cm x 110 cm surface
 - 2 mm gap
 - 2 mm glass
 (ρ_v=3÷5 x 10¹² Ωcm @ 25 °C)
- Assembly procedure and materials for spacers, supports and gas connectors identical to bakelite RPC produced by GT

Silk Screen Printing

Tommaso Tabarelli de Fatis - LCWS04 - Paris 2004

silk screen printed electrode

Resistive acrylic paint for electrical contacts deposited with silk screen printing technique

- Fast and reliable:
 - Up to 1000 m²/day

• Controllable and reproducible surface resistivity

G.C. Trinchero, A. Giuliano, P.Picchi, Nucl. Instr. and Meth. A 508 (2003) 102 M.Ambrosio et al. Nucl. Instr. and Meth. A 508 (2003) 98.

Rate capability studies

- Test Beam Facility @ LNF ideal bench for:
 - detector efficiency vs particle flux (rate capability)
 - aging maps

- BTF parameters:
 - e⁻ energy 50÷750 MeV
 - Repetition rate up to 49 Hz
 - Pulse duration 10 ns
 - Intensity 1÷10¹⁰ e⁻/pulse

Setup at the BTF

Efficiency Plateau

Efficiency vs Rate I

Efficiency vs Rate II

Tommaso Tabarelli de Fatis - LCWS04 - Paris 2004

$Ar/C_2H_2F_4/i-C_4H_{10}=48/48/4$

90% efficiency in streamer mode at 0.5 Hz/cm²

- Just about right for a muon detector at the Linear Collider
- Higher voltages/temperatures
 increase the rate capability
- To further extend the rate capability:
 - Avalanche mode (gas gain reduction by ~100)
 - Low resistivity glass

Long term (in)stability

- Continuous monitoring with cosmic rays
 - RPC arrays at LNF and Milano Bicocca
 - Efficiency and chamber noise (singles) maps
- All the chambers tested in 2003 have shown a significant efficiency drop

An example

Tommaso Tabarelli de Fatis - LCWS04 - Paris 2004

- Fast efficiency drop after a few weeks of operation
- Steady increase of the singles rate and of the RPC dark current
- Possible interpretation
 - Wet gas problem like in BELLE (overlooked)
 - sparks + Freon → HF (chemical attack of the glass surface)
 - H₂O modifies the surface conductivity
 - Water content > 200-300 ppm measured in both the set-up (permeability of plastic tubes)

Preliminary ESCA analysis of damaged electrodes

Tommaso Tabarelli de Fatis - LCWS04 - Paris 2004

Courtesy of C.Bianchi & F.Ragaini, Dipartimento di Chimica, Università di Milano

 Counts

System Name: XI ASCII Pass Energy: 156.51 eV Charge Bias: 5.0 eV Tue Jan 27 16:03:39 2004

- Suggested procedure to recover loosely damaged chambers
 - H.Sakai et al. NIM A484,153
 - C.Gustavino et al, RPC 2003 Conference
- Successful temporary recovery of a "dead" camber
- Need further tests Not for stable running

A basic solution

- Stainless steel/copper tubing
 dry gas (H₂O<50 ppm)
- More quenched gas mix $(Ar/C_2H_2F_4/i-C_4H_{10}=27/64/9)$
 - lower charge in the spark (catalyst of HF formation)
- (Partial) recovery of damaged chambers
- New chambers under study
 → Test the chamber lifetime

Another way out?

- Mechanical guenching
 - Honeycomb spacer blind to visible and UV photons and to electrons
 - Use of freon-less gas mixes
 - Spark dimensions determined by the cell size
 - Rate capability tuneable only through the electrode resistivity
 - Under study

Conclusions and outlook

- Large area glass RPC prototypes have been produced in collaboration with industry
 - Good efficiency (when new)
 - Somewhat noisy
- Maximum rate capability in streamer mode around 0.5 Hz/cm² with commercial float glass
 - Just about right for muon detectors at the Linear Collider
 - Further studies are planned to extend the rate capability (avalanche mode and conductive glasses)
- Instability problems related to water contamination
 - Running with dry gas (chamber lifetime?)
 - Recovery procedures?
 - Mechanically quenched RPC?