Event Generation of SM and SUSY Processes at LCs using Isajet v7.69

H. Baer, F. Paige, S. Protopopescu and X. Tata

OUTLINE

- Isajet overview
- SM processes in Isajet
- beam polarization in Isajet
- the Isajet SUSY models and sparticle mass calculation
- SUSY processes in Isajet
- sparticle 3-body decays in isajet
- tau decays in Isajet
- \bullet bremsstrahlung/beamstrahlung $\gamma\gamma$ in Isajet
- some future upgrades

Isajet overview

- Isajet the first of multi-purpose event generators to appear
- Created by Frank Paige and Serban Protopopescu in 1979 to model jet activity expected at the ill-fated BNL Isabelle pp collider
- Original algorithm contained:
 - Hard scattering processes (perturbative QCD)
 - Fox-Wolfram algorithm for final state parton showers
 - Field-Feynman independent hadronization (IH) algorithm
- Isabelle project terminated, but Isajet used for many analyses at CERN $Sp\bar{p}S$ collider: UA1 and UA2
- Jetset/Pythia (Sjöstrand) programs appear circa 1983; string hadronization (SH) model gives correlated $q\bar{q}$ hadronization
- SH and IH models agree well over most of phase space for e⁺e⁻ two jet events, but SH model predicts a depletion of hadronic acxtivity in region between hard jets (verified): result of color flow
- 1983: Sjöstrand develops backward shower algorithm to treat initial state QCD radiation for hadron colliders; incorporated into Isajet as well
- 1985: Marchesini and Webber release Herwig algorithm; angle-ordered parton showers account for some interference effects in multiple gluon emission; Herwig uses a cluster

hadronization model (CH) which accounts for color flow as does SH model; CH model clusters partons that are nearby in phase space into hadrons, thereby eliminating non-local effects that arise in SH model

- all programs include most important $2 \rightarrow 2$ SM hard scattering processes for e^+e^- , pp and $p\bar{p}$ colliders; degree of sophistication in modeling varies.
- The challenge of past 20 years is to merge PS algorithm with NLO QCD calculations; several attempts every year, so none appear overwhelmingly compelling (see *e.g.* Sjóstrand; HB/Reno; Soper; Collins; Webber; Mrenna; ···)

SUSY in Isajet

- 1984: primitive SUSY production processes plus one-step decays in Isajet used for UA1 and UA2 analyses
- 1989: HB and X. Tata develop SUSYSM program: parton level sparticle production with cascade decays
- 1990: interface with Pythia for SH model
- 1991: Jim Freeman (CDF) was entire SUSY group at FNAL; rough patch of SUSYSM into Isajet
- 1992: F. Paige and HB incorporate sparticle production and cascade decays into isajet 7.00; release 1993
- 1994 Colorado: e⁺e⁻ → SUSY into Isajet while on honeymoon; add WW, ZZ and ZH production; Isasugra SUSY RGE solution incorporated into Isajet;
- 1995: Susygen (Katsanevas)
- 1996: Spythia (Mrenna)
- 1996: polarized beams into isajet
- 1997: brem/beamstrahlung into isajet with help from M. Drees; large $\tan\beta$ SUSY event generation; treatment of τ helicity states
- 1998: 3-body decay MEs
- 1998: Suspect spectrum calculator
- 2001: SoftSUSY spectrum calculator

- 2002: SUSY in Herwig using Isajet decay table (Isawig)
- 2003: Spheno spectrum and decay calculator
- 2003: full one loop sparticle mass formulae in Isajet
- 2003: Les Houches accord (Skands et al.) to allow various spectra calculators interface with event generators

SM processes versus beam polarization

• EPOL keyword stipulates e^- and e^+ polarization • $P_L(e^-) = (n_L - n_R)/(n_L + n_R)$

 σ (fb)

Models for SUSY in Isajet (all are MFV models)

• MSSM (weak scale inputs; no RGE solution)

- MSSMA: $m_{\widetilde{g}}$, μ , m_A , aneta
- MSSMB: m_{Q_1} , m_{D_1} , m_{U_1} , m_{L_1} , m_{E_1} (1st gen.)
- MSSMC: m_{Q_3} , m_{D_3} , m_{U_3} , m_{L_3} , m_{E_3} , A_t , A_b , $A_{ au}$ (3rd gen.)
- MSSMD: m_{Q_2} , m_{D_2} , m_{U_2} , m_{L_2} , m_{E_2} (2nd gen. optional)
- MSSME: M_1 , M_2 (independent gaugino masses; optional)
- mSUGRA model (invokes RGE running solution)
 - $-m_0$, $m_{1/2}$, A_0 , aneta, $sign(\mu)$
- SUGRA (non-universal soft terms)
 - NUSUG1: M_1 , M_2 , M_3
 - NUSUG2: A_t , A_b , A_{τ}
 - NUSUG3: m_{H_d} , m_{H_u}
 - NUSUG4: m_{Q_1} , m_{D_1} , m_{U_1} , m_{L_1} , m_{E_1} (1st/2nd gen.)
 - NUSUG5: m_{Q_3} , m_{D_3} , m_{U_3} , m_{L_3} , m_{E_3} (3rd gen.)
- GMSB
 - $-\Lambda$, M, n_5 , aneta, $sign(\mu)$, C_{grav}
 - /R, $\delta m^2_{H_d}$, $\delta m^2_{H_u}$, $D_Y(M)$, n_{5_1} , n_{5_2} , n_{5_3}
- AMSB

 $-m_0$, $m_{3/2}$, aneta, $sign(\mu)$

• SUGRHN

 $-\,m_{
u_{ au}}$, M_N , $A_
u$, $m_{ ilde{
u}_R}$

• SSBCSC (select BC scale other than M_{GUT})

Isajet RGE solution (bottom-up approach)

- Begin with \overline{DR} gauge and Yukawa couplings at $Q = M_Z$
- Evolve up in E to where $g_1 = g_2$ (defines M_{GUT})
- Impose soft SUSY breaking masses at M_{GUT} and evolve down
- Calculate spectrum at $Q = M_{weak}$ using RG improved 1loop eff. pot. evaluated at optimized scale choice (accounts for leading 2-loop terms)
- sparticle masses at 1-loop
- Evolve back up, this time include Yukawa threshold corrections at scale $Q = \sqrt{m_{\tilde{t}_L} m_{\tilde{t}_R}}$
- Iterate process until convergent solution is achieved
- Usually good agreement between Isajet, Suspect, SoftSUSY, Spheno (Kraml et al. study)

Isajet RGE solution for sparticle masses

• Isasugra soft term evolution

Isajet RGE solution for Yukawa coulings

• Note MSSM-SM threshold corrections at $Q = \sqrt{m_{\tilde{t}_L} m_{\tilde{t}_R}}$

SUSY processes versus beam polarization

• Case study from BMT: PRD54, 6735 (1996)

Decays in Isajet

- Implement full set of sparticle cascade decays; valid at large $\tan \beta$ (not true for e.g. Pythia)
- spin correlation: production/decay neglected
- \bullet 3-body decays include exact matrix elements for E dependence
- τ decays: Isajet calculates rate to τ_L and $\tau_R;$ decays them appropriately

SUSY event for LC

 \bullet Isajet $e^+e^- \to SUSY$ event from Norman Graf for LC

Brem/beamstrahlung convolution

- Bremsstrahlung: Fadin-Kurayev distribution
- Beamstrahlung: P. Chen encoded by M. Drees and HB
- Convolution: $D_e(x) = \int_x^1 dz D_e^{brem}(\frac{x}{z}, Q^2) D_e^{beam}(z)/z$

Photon structure function

- Bremsstrahlung: Weizsacker-Williams
- Beamstrahlung: P. Chen encoded by M. Drees and HB

$e^+e^- \rightarrow \mu^+\mu^-$ including brem/beamstrahlung

\bullet Note γ and Z peaks

$$e^+e^-
ightarrow \mu^+\mu^-$$
 via $\gamma\gamma
ightarrow far{f}$: Isajet 7.70

 \bullet Note $\gamma\gamma$ dominance at low m

 $d\sigma/dm (fb/GeV)$

Future and conclusions

- Isajet allows for production of a variety of SM and SUSY processes including beam polarization, brem/beamstrahlung, $\gamma\gamma$, decay MEs, $\tau_{L/R}$ -decays, \cdots
- any future improvements usually depend on whether any one wants them implemented...