Progress towards a Long Shaping-Time Readout for Silicon Strips

> Bruce Schumm SCIPP & UC Santa Cruz LCWS Paris April 19-23, 2004

The SD Tracker

Idea: Noise vs. Shaping Time

Agilent 0.5 μ m CMOS process (qualified by GLAST)

Min-i for 300µm Si is about 24,000 electrons

Shaping (µs)	Length (cm)	Noise (e ⁻)
1	100	2200
1	200	3950
3	100	1250
3	200	2200
10	100	1000
10	200	1850

The Gossamer Tracker

Ideas:

- Long ladders → substantially limit electronics readout and associated support
- Thin inner detector layers
- Exploit duty cycle → eliminate need for active cooling
- Competitive with gaseous tracking over full range of momenta

Also: forward region...

The SCIPP/UCSC Effort

Faculty/Senior

Alex Grillo Hartmut Sadrozinski Bruce Schumm Abe Seiden

Post-Docs

Gavin Nesom Jurgen Kroseberg

Students

Christian Flacco Michael Young

Engineer: Ned Spencer

Pulse Development Simulation

Long Shaping-Time Limit: strip sees signal if and only if hole is collected onto strip (no electrostatic coupling to neighboring strips)

Incorporates: Landau statistics (SSSimSide; Gerry Lynch LBNL), detector geometry and orientation, diffusion and space-charge, Lorentz angle, electronic response

Result: S/N for 167cm Ladder

At shaping time of $3\mu s$; 0.5 μm process qualified by GLAST

Single-Hit Resolution

Design performance assumes $7\mu m$ single-hit resolution. What can we really expect?

- Implement nearest-neighbor clustering algorithm
- Digitize time-over-threshold response (0.1*τ more than adequate to avoid degradation)
- Explore use of second `readout threshold' that is set lower than `triggering threshold'; design implication

Resolution With and Without Second (Readout) Threshold

Readout Threshold (Fraction of min-i)

Michael Young, UCSC

B = 5 T; straight-through track B = 0; 180 mrad tilt (Lorentz angle for 5T)

Michael Young, UCSC

B = 5 T; track with 200 mrad incidence B = 0; 180 mrad tilt track with 200 mrad incidence

Different track angles for 5T field (B-Field) or 180 mrad tilt with no B-field (Tilted).

Different B-Fields (B-field) or detector tilt to simulate Lorentz angle (Tilted)

Do we need high-field test beam facilities?

Efficiency versus Track Angle

Michael Young, UCSC

→ Need to tilt detectors to regain efficiency? (but this is for γ =10, θ =90 – worst case)

Lifestyle Choices

Based on simulation results, ASIC design will incorporate:

- 3 μ s shaping-time for preamplifier
- Time-over-threshold analog treatment
- Dual-discriminator architecture

The design of this ASIC is now underway.

SILICON TRACKER FRONT-END ARCHITECTURE

** Profile: "nlc_chan-transient" [C:\Projects\NLC\preampTSMCmodels\nlc_chan-nlc_chan-transient.sim] Date/Time run: 01/02/04 14:15:19 Temperature: 27.0

Looking ahead

Challenges continue to arise in circuit design (but at least they're being caught before the chip is made!)

Layout in specific technology (0.25 μ m mixed-signal RF process from Taiwan Semiconductor) lies ahead; substantial experience at SLAC and within UCSC School of Engineering

Long ladder, Nd:YAG pulsing system, readout under development

Project is very challenging, but progress is being made, albeit slower than first envisioned.

Analog Readout Scheme: Time-Over Threshold (TOT)

TOT given by difference between two solutions to

$$\frac{\theta}{r} = \frac{et}{\tau} e^{-t/\tau}$$

(RC-CR shaper)

Digitize with granularity τ/n_{dig}

Why Time-Over-Threshold?

With TOT analog readout:

Live-time for 100x dynamic range is about 9τ

With $\tau = 3 \ \mu s$, this leads to a live-time of about 30 μs , and a duty cycle of about 1/250

Sufficient for powercycling!

Pursuing the Long-Shaping Idea

LOCAL GROUP

SCIPP/UCSC

- Optimization of readout & sensors
- Design & production of prototype ASIC
- Development of prototype ladder; testing
- Supported by 2-year, \$95K grant from DOE Advanced Detector R&D Program