GaAs:Cr for HEP – radiation tests

I HEP, ProtvinoNCPHEP, MinskSI PT, TomskI CBP, Puschino

Yuri Arestov, IHEP

Our predecessors

- RD-20, CERN Si, GaAs
- RD-48, CERN Si, GaAs
- A. Vorobiev, IHEP GaAs, Si
- P. Sellin e al, 1995 GaAs
 - neutrons, 1 MeV, fluence up to 1.10¹⁴ n/cm⁻² A. Vorobiev, IHEP, 2002

GaAs cooling, temperature dependence FNAL, D0 report, 2002

Silicon detectors from ELMA, ST, Ham., ... and many others

Doping GaAs by Chromium – the 5-year practice of a new technology in Tomsk

structure type	Si	GaAs
p-i-n	YES	YES
π-ν-n	NO	YES

- Resistive Si structures have not been obtained so far.
- World studies of GaAs irradiation tolerance related mainly to GaAs structures of the previous generation.

A new unique production technology of GaAs:Cr (doped by Chromium) belongs to Tomsk.

As was earlier shown by estimates and by the first measurements (Protvino, RAL), GaAs:Cr radiation hardness can be higher than that of Si by a factor of 10 or larger.

GaAs pad 1cm·1cm

Cigarette lighter

General view. The detector is shielded by $5\mu m$ gold cover.

Yuri Arestov, IHEP

GaAs:Cr general properties

	GaAs	Si	PbWO ₄	Pb	W
X_0 , cm (rad. length)	2.30^{a}	9.36	0.89	0.56	0.35
R _M , cm (Molliere radius)	2.63 ^c	4.91 ^c	2.2	1.60 ^c	0.89(0.91°)
$\lambda_{\rm I}$, g/cm ² (nucl. Int.	140 ^a /	106/	/	194/	185/
length)/cm	26.1	45.5	22.4	17.09	9.59
ρ , g/cm ³ (density)	5.36	2.33	8.28	11.35	19.3
Z/A	Ga: 31/70 As: 33/75	14/28		82/207	74/183.8
E_c , MeV, electron critical energy ^b	18.35	40.03		7.33	8.11
<i>dE/dx</i> , MeV/cm per mip	7.44	3.6	13.0	~13	~23

- ^a taken as for Ge with Z=32 and A=72.6 and ρ =5.32 g/cm³.
- ^b calculated as E_c = 610 MeV/(Z+1.24)
- ^c calculated as $R_M = X_0 \cdot 21 \text{ MeV}/E_c$

GaAs vs Si

Properties (by courtesy of O.P. Tolbanov)	Si	GaAs:Cr
lonization density, <i>dN/dx</i> (pair/µm)	90	177
Charge drift velocity, <i>cm/sec</i>	3.10 ⁶	1.10 ⁷
Response (amplitude of induced current per mip), µA	0.4	3
Radiation hardness in terms of <i>CCE</i> , Charge Collection Efficiency	30% at ∼10 ¹² cm⁻²	50% ~10 ¹⁴ cm ⁻²
Leakage current	Refrigeration needed	No refrigeration

GaAs test series in Nov. 2003 – Jan. 2004

- Proton beam at IHEP
 booster
- Gamma source in Puschino
- Data analysis in Protvino and Tomsk

Absorbed dose – is it known accurately? -- YES

Direct measurement with AI foils -- Г.И. Бритвич Verification with booster beam profiles – A.C. Гуревич

GaAs diodes NN= $1\div7$ Low beam intensity $I_p=2\cdot10^{11}$ p/pulse

VACs before /after

NOTE. Diode N3 was irradiated up 40 Mrad, and later it was found to be damaged mechanically due to an unknown reason.

Yuri Arestov, IHEP

Stand at work

A.G. Kholodenko, 14.01.2004

Это сбор заряда от напряжения, просто данные и центры тяжести сигнального и пъедестального пиков.

Yuri Arestov, IHEP

GaAs:Cr 1cm•1cm detectors in 1.7 GeV/c proton beam (Dec. 2003)

14 GaAs detectors were exposed, and 7 of them to 'low lintensity' beam with $2 \cdot 10^{11}$ p/pulse and 7 to high-intensity beam with $6 \cdot 10^{11}$ p/pulse. The absorbed doses were the same in both sets and they corresponded to fluences from $2 \cdot 10^{13}$ p/cm² to $5 \cdot 10^{15}$ p/cm².

GaAs N15 and N16 irradiated by gammas

NOTE. Unfortunately, no curves obtained before irradiation

Yuri Arestov, IHEP

GaAs: Cr 1cm•1cm detectors at gamma irradiation (Jan. 2004)

The detectors were exposed to γ source with the gamma energy 1.25 MeV. The absorbed doses ranged from 5 to 51 Mrad . The figures show the full tolerance of GaAs to the gamma fluxes within this load range.

GaAs Prospects for LC particle ID

Vertex detectors
 Forward detectors
 Forward calorimetry
 Luminosity monitors

GaAs for TESLA tracking

Vertex Detector

Intermediate
 Tracking System

Intermediate Trackers

Yuri Arestov, IHEP

GaAs:Cr for ECAL

LAT = Low Angle Tagger TDR: 63 planes of W (2.6mm) and silicon (0.5mm) GaAs alternative: a few front planes with GaAs diodes

LCAL=LumiCAL TDR: LAT-like W+Si design GaAs alternative: full GaAs replacement of silicon

Conclusion

О.П. Толбанов говорит:
 Вывод 3: В GaAs вдвое выше плотность ионизации, втрое выше быстродействие и в 5 раз выше амплитуда импульсов наведённого тока.
 Вывод 4: GaAs в сравнении с Si имеет радиационную стойкость более, чем на 2 порядка выше.

GaAs detectors provide:

- Stronger signal:
- Higher radiation hardness:
- Tolerant leakage currents (no refrigeration)
- New high-tech opportunities in HEP instrumentation
- Applied science and interdisciplinary studies

YET...

We continue to work... It would be nice:

to continue studies in hadron
 beams up to a final conclusive
 step regarding GaAs vs Silicon.

- to irradiate in neutron beams.
- to involve interested parties.
- to get a support.