M_A determination from the Higgs branching ratios with full parametric uncertainties

K. Desch, E. Gross, S. Heinemeyer, G. Weiglein, L. Živković

Introduction: MSSM at the Tree Level

- > Two complex scalar doublets in MSSM \Rightarrow five physical states: h, H, A and H[±]
- > The Higgs sector of the MSSM is fully determined at the lowest order by only two parameters: M_A and $\tan\beta = v_2/v_1$. Both can be determined if the heavy Higgs bosons are observed
- ➤ The decoupling limit corresponds to M_A >> M_Z ⇒ the properties of the light CP-even Higgs boson approach those of SM Higgs boson
- The phenomenology of the light CP-even Higgs boson can be predicted if experimental results on the heavy Higgs are available

Introduction - Cont.

- The tree-level upper bound on the mass of the lightest Higgs boson is m_h < m_Z
- In real life we need to take into account large radiative corrections in particular from top/stop sector (sbottom for large tanβ also) that can push mass of the light Higgs boson up by about 50%
- Observed deviations in the Higgs sector can no longer be attributed to a single parameter

Is it a SM or an MSSM Higgs Boson?

27/04/2004

SM vs MSSM Higgs Couplings

> Already at the tree-level couplings of the Higgs boson are changed compared to the SM Higgs $g_{MSSM} = g_{SM} \cdot f(\alpha, \beta)$

f(α,β)	Down type fermions	Up type fermions	Gauge bosons
h	-sinα/cosβ	cosα/sin β	sin(β-α)
н	cosα/cos β	<mark>sinα/sin</mark> β	cos(β-α)
A	-iγ ₅ tanβ	-iγ ₅ cotβ	0

 \succ Radiative corrections to the CP-even Higgs mixing angle α can have significant effect on Higgs boson couplings

A Toy 1-loop Model

> Simple approach - with ε -radiative corrections:

$$\varepsilon = \frac{3G_F}{\sqrt{2}\pi^2} \frac{m_t^4}{\sin^2 \beta} Log\left(\frac{m_{\tilde{t}_1} m_{\tilde{t}_2}}{m_t^2}\right)$$

$$M_A \gg M_Z \Rightarrow \beta - \alpha \to \pi/2 - \eta, \text{ with small } \eta:$$

$$\eta = \frac{m_Z^2 |\cos 2\beta| + \varepsilon/2}{m_A^2 - \varepsilon/|\cos 2\beta|} \sin 2\beta$$
then
$$\frac{\sin^2 \alpha}{\cos^2 \beta} \to 1 - 2\eta \tan \beta; \quad \sin^2(\beta - \alpha) \to 1 - \eta^2$$

L. ZIVKOVIĆ

27/04/2004

- Several analyses have been performed:
 - D. Asner et al., Eur. Phys. Jour. C 28 (2003) 27, hep-ex/0111056;
 - J. Guasch, W. Hollik and S. Peñaranda, Phys. Lett. B 515 (2001) 367, hep-ph/0106027;
 - M. Carena, H. Haber, H. Logan and S. Mrenna, Phys. Rev. D 65 (2002) 055005, E: *ibid* D 65 (2002) 099902, arXiv:hepph/0106116.
- They all kept fixed all parameters except one under investigation (i.e. M_A) assuming that SUSY parameters enter without any experimental or theoretical uncertainty ⇒ here we take into account all experimental and theoretical uncertainties

Model is <u>SPS1a</u> with following errors assumed:

> We compare theoretical prediction of

 $r \equiv \frac{\left[BR(h \to b\overline{b}) / BR(h \to WW^*)\right]_{MSSM}}{\left[BR(h \to b\overline{b}) / BR(h \to WW^*)\right]_{SM}}$

with its prospective experimental measurements

Even though the experimental error of the two BR's is larger than that of the individual ones, it has stronger sensitivity

of their experimental errors

If we assume different stop masses we would get different values of r for lower M_A

<u>590 < M_{st2} < 630 - SPS1a</u>

1100 < M_{st2} < 2000 - unconstrained MSSM

27/04/2004

- > Lighter stop is accessible \Rightarrow we can expect that we can determine mixing angle θ_{st} with sufficient accuracy so we might be able to predict the mass of the heavier stop, distinguishing between the two bands
- > For the experimental accuracy of r we consider:
 - 4% from the first phase of $LC@\sqrt{s} = 500 \text{ GeV}$
 - 1.5% from the LC@ \sqrt{s} = 1 TeV

- > Divide the mass spectrum into 5 GeV slices.
- \succ Calculate the r_{mean} .
- Calculate the standard deviation from the mean value.

Mass point $m_A = 502.5 \text{ GeV}$ is a set of points $m_A \in [500, 505)$

27/04/2004

 \succ Add to in quadrature the error in the measurement of r, i.e. 4%.

L. Živković

- \succ The resulting bands of 1σ and $1\sigma \oplus 4\%$
- > Pick the mass point. Go up and down in r till you hit the band boundary. Then find the mass errors (vertical right and left). Those will be Δm^+ and Δm^-

27/04/2004

> We can measure M_A with a precision 20% (30%) up to a M_A = 600 (800) GeV with an accuracy of 1.5% on r!

27/04/2004

From here, we can read everything ③

Why not bb/ττ?

Distinguishing Higgs models in $H \rightarrow bb/H \rightarrow \tau\tau$; Guasch, Hollik, Peñaranda; hep-ph/0106027

27/04/2004

What about bb, WW or $\tau\tau$ alone?

> Again, we can get the best sensitivity with the ratio

19

Determination of A_t if A is observed

- We assume <u>SPS1b</u> scenario and following experimental information from LHC:
 - $\Delta M_A = 10\% (M_A \sim 550 \text{ GeV})$
 - $tan\beta > 15$
 - Determination of tanß from the comparison of the measured cross-section (bbH/A, H/A $\rightarrow\tau\tau,\mu\mu$) with the theoretical prediction; large errors from QCD uncertainties and experimental errors on SUSY parameters.
 - Δm_{stop} , $\Delta m_{sbottom}$ = 5%
 - Measured at LHC, but outside of the kinematic limit of the LC
 - $\Delta m_h = 0.5 \text{ GeV}$
 - At the LC the mass of the light Higgs can be measured with an accuracy of 50 MeV, but we assumed 0.5 GeV in order to account theoretical uncertaities

Determination of A_t if A is observed

- The experimental information from the heavy Higgs and scalar quark sectors => prediction on the branching ratios of the light Higgs => consistency test of the MSSM
- Yellow full parameter space of the MSSM allowed
- > Light blue $\Delta M_A = 10\%$, $\Delta m_{st} = 5\%$, tan β > 15
- > Dark blue additional $\Delta m_h = 0.5 \text{ GeV}$
- Predictions compared with the prospective experimental accuracies at the LC

27/04/2004

Determination of A_t if A is observed

() 0.14 0.13 8 0.12 > We investigate $BR(h \rightarrow WW)$ as a $\Delta m_{A} = 10\%, \Delta m_{c1} = 5\%, \tan\beta > 15, \Delta m_{I} = 0.2 \text{ GeV}$ function of a trilinear coupling $\Delta m_{\rm h} = 0.5 \, \text{GeV}$ 0.12 A_{\dagger} 0.11 0.1 \succ If we can measure precisely m_{h} , we can determine the sign of A_+ 0.09 $\Delta BR(WW) = 5\%$ 0.08 \succ Precise measurement of m_{t} is 0.07 crucial 0.06 0.05 0.04 600 800 1000 -1000-800 -600 -400 -200 200 400 A_{t} (GeV)

Conclusions

- If we find just one Higgs boson at LHC, precision measurement at LC would allow to tell its nature (SM or MSSM)
- We could put constraints on the mass of the CP-odd Higgs boson precision would be 20 (30)% for m_A equal to 600 (800) GeV
- If we find several Higgs bosons at LHC, precision measurement at LC would allow us to shed some light on the possible model

