RPC DHCAL R&D in IHEP - Protvino

Vladimir Ammosov

Institute for High Energy Physics Protvino Moscow region, Russia

Outline

- **1. Selection of DHCAL RPC performance**
- 2. Further R&D
 - 5T mag field test
 - -mini DHCAL prototype
 - -1 m3 DHCAL prototype
- 3. Summary

DHCAL RPC performance

RPC pad size

DHCAL RPC performance

Gas mixtures

RPCs were tested in saturated avalanche and streamer modes For both modes TetraFluoroEthane (TFE) based mixtures were used TFE = freon $134A = C_2H_2F_4$ ~ 8 ionizations/mm

Saturated avalanche mixtures = TFE/IB/SF₆ IB = Iso-C₄H₁₀ as quencher, IB fraction = 5% SF₆ as streamer suppresor, SF₆ fractions = (2-5)%

Streamer mixtures = TFE/IB/Ar or N₂ IB = Iso-C₄H₁₀ as quencher, IB fraction= (5-20)% Ar/N₂ as streamer developer, fractions = (2-20)%

RPC in avalanche mode

EVALUATE: Typical Q and m distributions 1.2 mm, 2% SF₆, 8.4 kV - working point, 2.2 mV thr

RPC in avalanche mode

April 21, 2004

RPC in streamer mode

Typical Q and M distributions, 200 V above knee 1.2 mm gap, TFE/Ar/IB=80/10/10

Paris, LCWS-2004

RPC in streamer mode

Eff, M and Q vs HV for 1.2 and 1.6 mm gaps Ar10 mix for different thresholds

best choice - thr = 300 mV

April 21, 2004

V.Ammosov Paris, LCWS-2004 8

Comparison of avalanche and streamer modes

Rate capability streamer ~2-3 Hz/cm² avalanche ~100 Hz/cm²

It is hard to work in streamer mode even for usual beam conditions

Streamer is suitable only for very low rates like e+e⁻ FLC

Comparison

of avalanche and streamer modes

As example, for 1.2 mm gap

N⁰	Item	avalanche	streamer
1	Working mixture	TFE/Iso/SF6=93/5/2	TFE/Iso/Ar=80/10/10
2	HV working point, kV	7.4	7.4
3	Induced charge, pC	3.4	400
4	Threshold on 50Ω, mV	1-2	300
5	Efficiency, %	~98	~95
6	σ_0 / Q	~ 0.9	~ 0.6
7	Pad multiplicity	1.4-1.5	1.2 - 1.3
8	Noise, Hz/cm ²	~ 0.7	~ 0.1
9	Rate capability, Hz/cm ²	100	2 - 3

Summary of RPC features

N⁰	Item	Value	Comments
1	Pad size	<u>1x1 cm2</u>	
2	Number of gaps	monogap	
3	Mode of operation	saturated avalanche	
4	Working mixture	TFE/Iso/SF6=93/5/2	
5	Gas gap	1.2 mm	1.6 mm can be
6	Resistive plates	thin glass,10 [^] 13 Ω·cm	used
7	HV working point, kV	7.4	
8	Induced charge, pC	~3	
9	Threshold on 50 Ω , mV	1-2	
10	Efficiency, %	~98	
11	HV plateau	~600 V	
12	σο/Q	~ 1	
13	Pad multiplicity	1.4-1.5 ?	
14	Noise, Hz/cm ²	~ 0.5	
15	Rate capability, Hz/cm ²	≤100	
16	Resistivity of HV coverage	>10^6 Ω/ sq	
17	Control of RPC work	Q RO of cathode strips	
18	Maximal own RPC thickness	<u>6 mm</u>	try to keep 5 mm
	with 2 mm SS cups	<u>10 + 0.5 mm</u>	

April 21, 2004

DHCAL RPC performance

Geant3 simulations

Further R&D

Assembly for 5T test

It was proposed to test RPCs in 5T magnetic field at DESY to check influence of electron spiralization

Here is our proposal for this test with 64 pad RPCs

Expected in May-June 04

Further R&D

5T test

Here is assembly which we would like to use

April 21, 2004

Further R&D

5T test

64 channel RO electronics

<u>Analog part</u> - Minsk old 8 ch. ASIC ANODE. New one is delayed up to May

Digital part – ALTERA FPGA

Sequental read-out to PC

Was tested with RPC satisfactory

Final PCB is under development

April 21, 2004

April 21, 2004

V.Ammosov Paris, LCWS-2004

16

Mini DHCAL prototype

Goal – first digital measurements of electromagnetic showers and comparison with simulations. Usage of minimal number of RO channels ! (640/1280 ch.) Most hard case for digital calorimetry !

April 21, 2004

Design of 1 m2 RPC plane

1000x1030 mm2 - lateral dimensions 970 x 970 mm2 – glass area 960 x 960 mm2 – sensitive area Weight ~ 40 kg

96x96 = 9216 anode pads in total 8 anode RPC PBs of 240x530 mm2 24x48 = 1152 pads on each

SS cups and Al bar frame form hermetic box. It prevents glass break due to gas overpressure.

Construction of 1 m2 RPC plane

Gas volume: anode glass – 0.5 mm thick, cathode glass – 0.8 mm thick, 1.2 mm gas gap, 6 mm dia spacers

April 21, 2004

Construction of 1 m2 RPC plane

96x6 cm2 strips for read-out

16 anode (x) strips 16 cathode (y) strips

Test of 1 m2 RPC plane

Cosmic ray trigger Using scint counters 96x6 cm2 2 counters - top 1 counter – bottom

TFE/IB/SF6=90/5/5 gas mixture

ANDDE STRIPS

.

CATHODE STRIPS

.

.

.

4 6 B 10

4 6 B 10

. . .

....

12 14

anode strip number

A . A

12 14

cathode strip number

16

16

Test of 1 m2 RPC plane

Test of 1 m2 RPC plane

Current ~ $1\mu A/m2$ at working HV = 9 kV

Noise rate ~ 0.5 Hz/cm2 At working HV = 9 kV

Summary

1. Selection of DHCAL RPC perform 1.2 mm monogan glass RPC saturate ava	nance lanche mode	
2. 1m2 RPC plane	lanche moue	
robust design, eff~94%, non uni <2%		
3. Further R&D		
- 5T mag field test	June04	
- Mini DHCAL test in e-beam	Dec04	
- production of 40 units of 1m2 RPC planes		
for 1m3 DHCAL prototype	Apr05	
- beam tests of 1m3 DHCAL prototype	Dec05	