

Large (Tesla) detector concepts

Paolo Checchia INFN PADOVA

Large (Tesla) detector concepts

Summary

Introduction

Tracking

Calorimetry

Magnet + µ **detector**

Expected performance

Conclusions

Introduction

Requirements-solutions

- Excellent vertex resolution to identify heavy flavours $(b,c,\tau) \Leftarrow g_{Hff}$
- Tracking system with good δp and high efficiency for multi-jet events $\Leftarrow HZ \rightarrow Hl^+l^-$
- Good Energy flow $\Leftarrow W, Z \rightarrow q\bar{q}(\prime), \text{SUSY}$
- Luminosity spectrum (beamstrahlung) $\Leftarrow \sigma$ at threshold
- Excellent lepton identification

26/04/04

		TESLA	SD	LD	JLC
/y	Tracker type	TPC	Silicon	TPC	Jet-cell drift
	R _{min} barrel (m)	1.68	1.27	2.00	1.60
	1 ype Sampling	$30 \times 0.4 X_0$ +10 × 1.2 X ₀	$30 \times 0.71 X_0$	$40 \times 0.71 X_0$	$38 \times 0.71 X_0$
ation	Gaps (active) (mm)	2.5 (0.5 Si)	2.5 (0.3 Si)	1 (scint.)	1 (scint.)
	Long. readouts	40	30	10	3
	Trans. seg. (cm)	≈ 1	0.5	5.2	4
	Channels $(\times 10^2)$	32000	50000	135	5
	$z_{\rm min}$ endcap (m)	2.8	1.7	3.0	1.9
	HCal				
	$R_{\rm min}$ (m) barrel	1.91	1.43	2.50	2.0
	Туре	T: scint. tile/S.Steel D: digital/S.Steel	digital	scint. tile/Pb	scint. tile/Pb
	Sampling	$\begin{array}{c} 38\times0.12\lambda~({\rm B}),\\ 53\times0.12\lambda~({\rm EC}) \end{array}$	$34\times 0.12\lambda$	$120\times 0.047\lambda$	$130\times 0.047\lambda$
	Gaps (active) (mm)	T: 6.5 (5 scint.) D: 6.5 (TBD)	1 (TBD)	2 (scint.)	2 (scint. $)$
	Longitudinal readouts	T: 9(B), 12(EC) D: 38(B), 53(EC)	34	3	4
	Transverse segmentation (cm)	T: 5–25 D: 1	1	19	14
	θ_{\min} endcap	5°	2°	2°	8°
	Coil				
	$R_{\rm min}$ (m)	3.0	2.5	3.7	3.7
Paolo C	B (T)	4	5	3	3

TESLA TDR

 $\begin{array}{ll} \mathrm{VTX} &\Rightarrow \delta(I.P.) \leq 5 \mu m \oplus \frac{10 \mu m}{p \sin^{3/2} \theta} \\ \mathrm{TPC} &\Rightarrow \delta \frac{1}{p_t} < 2 \cdot 10^{-4}, \, \mathrm{Tracking} \, \delta \frac{1}{p_t} \leq 5 \cdot 10^{-5} \frac{GeV}{c}^{-1} \\ \mathrm{ECAL} &\Rightarrow \frac{\delta E}{E} \leq 0.10 \frac{1}{\sqrt{E(GeV)}} \oplus 0.01, \, \mathrm{granularity} \\ \mathrm{HCAL} &\Rightarrow \frac{\delta E}{E} \leq 0.50 \frac{1}{\sqrt{E(GeV)}} \oplus 0.04, \, \mathrm{granularity} \\ \mathrm{COIL} &\Rightarrow 4 \, \mathrm{T}, \, \mathrm{uniformity} \leq 10^{-3} \\ \mathrm{EFLOW} &\Rightarrow \frac{\delta E}{E} \sim 0.3 \frac{1}{\sqrt{E(GeV)}} \\ \mathrm{Low} \, \mathrm{Angle} + \mathrm{Lumi} \, \mathrm{CAL} \, \mathrm{down} \, \mathrm{to} \sim 5 \, \mathrm{mrad} \, (\mathrm{veto}) \end{array}$

Tracking: Vertex Detector

- Impact parameter optimization: minimize R \Leftrightarrow machine background if B=4 T R₁=1.5 cm possible <0.1 hit/mm² minimal multiple scattering \Rightarrow thickness
- Maximal solid angle: forward region |cosθ| geometry dipends on thickness (conical end-caps)
- Tecnologies: CCD CMOS +.. Pixels 26/04/04

layout for all technologies :

- Pixels (3D)⇒ 1 Gpixel
- inner layer as closest as possible to I.P.
- 5 layers for independent tracking
- layer thickness ~ 0.1 X_0
- •Point precision < 5 μ m/layer
- Good segnal/noise ratio
- Not extreme radiation resistence required

Tracking :V.D.

• CCD

needs R&D:

reduction of material with unsupported Silicon improving of the clocking rate improving the radiation hardness

Layer	Radius	CCD L×W	CCD size	Ladders and CCDs/lddr	Row clock fcy & Readout time	Bgd occupancy	Integrated bgd
	mm	mm ²	Mpix			Hits/mm ²	KHits/Train
1	15	100×13	3.3	8/1	50 MHz/50 µs	4.3	761
2	26	125×22	6.9	8/2	25 MHz/250 µs	2.4	367
3	37	125×22	6.9	12/2	25 MHz/250 µs	0.6	141
4	48	125×22	6.9	16/2	25 MHz/250 µs	0.1	28
5	60	125×22	6.9	20/2	25 MHz/250 µs	0.1	28

Key parameters of the CCD-based vertex detector design

- CMOS +.....
 - Charge collection by diffusion in undepleted epitaxial layer
 - Fill factor 100%
 - Detector inseparable from RO electronics
 - Low cost
 - Test results: $\epsilon > 99\%$, 20 μ m pitch $\Rightarrow \sigma \sim 2\mu$ m

Paolo Checchia LCWS04

Tracking :V.D.

goal: $\sigma < 7 \ \mu m$

Matherial budget

The Si-Envelop and integration issues (Intermediate tracking)+...

The Si-envelop is presently made of: SIT (2 double-sided layers) + FTD (7 wheels, 3 pixels + 4 microstrips) SET (3 layers: 2 single sided+1double-sided) +Si-FCH (4 XUV planes) The technology (all but FTD)=long µstrips

In the case of a large detector (i.e. with a TPC as central tracker), the components of the Si-Envelop are in strategic positions.

The integration issues are addressed both on the mechanical and simulation sides *from A. Savoy-Navarro

TPC

GEM

- In use (LEP + STAR, ALICE)
- much less tracks tracks 3 d,~ no P.R.
- event pile-up from many BX
 ⇒ good time information
- continuous operation during a train
 - $\Rightarrow \text{ReadOut system} \\ \text{gating scheme} \\$
- minimize end-plate material
- Internal Radius \Leftarrow mask system
- External Radius $\Leftarrow \delta \frac{1}{p_t} < 2 \cdot 10^{-4} (\text{GeV/c})^{-1}$
- RO: GEM, Micromegas, w. ch. \Leftarrow B=4 T

problems with MWC (ExB, ions, end plate thickness?) solutions: GEM,

Micromegas polymer foil with metal coating on both si holes $\sim 100 \mu m$ apart,

 $\Delta V \Rightarrow \mathbf{E} \sim 80 \mathrm{kV/cm}$

26/04/04

Paolo Checchia LCWS

effect comparison

• Resolution optimization \Rightarrow Chevron pad 200 points/track

• Calibration: local distortions $\leq 10 \mu m$

Calorimetry

General overview

- From Physics: complex hadronic final states (i.e. $t \rightarrow bW$) missing energy (i.e. $\nu, i\tilde{n}i$)
 - hermeticity down to low angles
 - lepton id
 - angular resolution
 - jet 4-vector reconstruction (partons) strategy: energy flow algorithms as $E = \Sigma_{ch} p^{tk} + \Sigma_{\gamma} E^{ecal} + \Sigma_{neut.} E^{hcal}$ \downarrow

high granularity to disentangle contributions calorimeters inside the coil

* $\delta E/E = \alpha/\sqrt{E} =$

$$60\%$$
 x≈0 +25% x≈10 √/√E +10%
x≈80%/√E + δ_{confusion}

- Where granularity has the largest importance
 - TDR: 2 solutions

26/04/04

Paolo Checchia LCWS04

Alternative Hybrid Solution: LCCAL

- •45 layers
- $\bullet 25 \times 25 \times 0.3 \text{ cm}^3 \text{ Pb}$
- •25 × 25 × 0.3 cm³ Scint.: 25 cells 5 × 5 cm²

•3 planes:

- 252 .9 × .9 cm² Si Pads
- •at: 2, 6, 12 X₀

Test beam results: Si Pad two particle separation

Hadronic Calorimeter

TESLA

- 2 solutions 4.5λ

```
σ tail
38 layers Fe/Sc/fibers (mm) 20/5/1.5
Transv. Dim (cm<sup>2</sup>) 5 × 5 ÷ 25 × 25
Long. Segm. 9
Layers per segm. 3 ÷ 7
```

- MiniCal prototype operational in e+ beam @ DESY
- 3 types of photo-detectors tested (PM, SiPM, APD) See i.e. E.Garutti this LCWS....

• digital (binary)

```
38 layers Fe/RPC- limited Geiger w. ch.- w. Dim. Transv. (cm<sup>2</sup>) 1 \times 1
Long. Segm 38
Saturation?
```

- Scin "pixels"/SS
- * RPC/SS
- * GEM/SS
- Cerenkov compensated Analog
 - 14-11-03, ECFA workshop
- Digital 9 cm² hexagonal tiles NIU Digital 1 cm X 1 cm pads (many) Digital 1 cm X 1 cm pads (UTA) Analog G. Eigen, U Bergen/DESY 18

...+ all the excellent work shown in this LCWS

Paolo Checchia LCWS04

26/04/04

Calorimetry: Forward Region

26/04/04

Magnet and muon detector

μ layout:

- Based on CMS design
- B=4 T in 6 m diameter di, 9.2 m length
- high omogeneity (TPC)
- Coil: 5 modules, 4 windings
- Correction in the external modules
- Yoke: 10 layers Fe/ μ ch 10/4 cm

-12 (end-cap:11) RPC or streamer tube layers

- 3 parts/layer: 370,700,370 cm
- 6 modules (122 cm), 12 modules (115 cm)
- ~3 cm strips, 25x25 cm² pads
- -~5000 m² in total

μ identification (to be ass. to the centr. detect.)

- measure hadronic shower tails $\Delta E \sim 150\% \sqrt{E \oplus 20\%}$

Expected Performance:Flavour Id.

topological vertex*

use Neural Network:

efficiency

4 layers, double thickness

*T. Kuhl Amsterdam 2003

26/04/04

0.2

Expected Performance:momentum resolution

Expected Performance:

0.996

0.997

0.998

0.999

Vs Ns

Conclusions

A "Large" detector as the TESLA one is adequate for the Physics Program of a Linear Collider

- still R&D (done and) to be done but...
- No big principle problems

excellent momentum resolution

high precision in impact parameter (Flavour tagging)

jet energy recostruction (with many solutions for calorimeter realization)

hermeticity

Backup

machine conditions

DAQ

- Long time between bunch trains: 199 ms
- Bunch separation in a train: 337 ns
- Train length: 950 μ s (2820 BX)
- $L = 3.4 \cdot 10^{34} \text{cm}^{-2} \text{s}^{-1}$, σ , background
 - $\Rightarrow 220 \text{ MBytes/train}$

₩

- Hardware trigger unnecessary
- Data in pipeline for 1 ms, no dead time
- 200 ms for pipeline ready
- Software event selection
- Moderate throughput w.r.t. LHC

Beamstrhlung

• $\delta E \sim 3\%$

SET SI-FCH

Si-Envelop components fulfill the following roles:

- SIT links μ vertex (σ ~2-3 μ m) with TPC (σ ~100 μ m)
- SET links TPC with calorimetry
- Similarly in the FW region: FTD and Si-FCH.

Questions to be answered:

In the case of SET & Si-FCH especially:

- > One point? What precision?
- One segment?
- > One track? (requested length of tracking level arm?)
- ➤ How this design compares with SD in central & FW?
- ➤ How they improve the overall detector performances?

ASN, SiLC Progress Report, LCWS04

SET SI-FCH

Si-Envelop components fulfill the following roles:

- SIT links μ vertex (σ ~2-3 μ m) with TPC (σ ~100 μ m)
- SET links TPC with calorimetry
- Similarly in the FW region: FTD and Si-FCH.

Questions to be answered:

In the case of SET & Si-FCH especially:

- > One point? What precision?
- One segment?
- > One track? (requested length of tracking level arm?)
- ➤ How this design compares with SD in central & FW?
- > How they improve the overall detector performances?

ASN, SiLC Progress Report, LCWS04

Simulation studies

To answer previous questions and study detector performances use of SGV fast simu, with first answers. And work in progress with full simu BRAHMS & MOKKA + G4

aSET: 0, 1 pt, or segment: ∆(1/p) 2, 3 and 5 layers TDR 1 layer SET 2 layer SET **3** layer SET 5 layer SET 10 175 150 p (GeV/c) (dy) N With or without SET or FCH 10 Without SET/SiFCH With SET/SiFCH 2.5 GeVk 10 25 CeVk 250 GeVh 10 20 30 50 (m) 70

O (degrees)

Fûll/@44simulation of H→bb Z→@adde Checchia LCV including SET (white detector) –