A Digital Hadron Calorimeter With Resistive Plate Chamber - US Effort

> David Underwood Argonne National Laboratory

LCWS Paris 2004

## Collaborators

- Argonne National Laboratory (Member of CALICE)
- Boston University
- University of Chicago
- Fermilab

• UTA (Member of Calice)

Developing GEMs for DHCAL Collaborating on Electronics

# Grand Plan: 1 m<sup>3</sup> RPC DHCAL

• 1 m<sup>3</sup> needed to contain most of Hadronic Shower

40 layers of 1 m<sup>2</sup> RPCs 1 cm x 1 cm pads  $\rightarrow$  400,000 readout channels Steel Absorber (20 mm)

- Readout Electronics : The Real Challenge
- To be tested in a particle beam

## 1 m<sup>3</sup> Prototype DHCAL Section

Valid on its own (independent of LCD design) Necessary for LCD optimization

#### **Motivation**

Validate technology of active medium (RPCs, GEMs, Scintillator) Test concept of electronic readout (400,000 channels is a challenge) Measure hadronic showers with unprecedented spatial resolution Compare results with AHCAL Compare results of DHCAL with scintillator and gaseous detector Validate MC simulation of hadronic showers

#### **Time scales**

2004: complete R&D on both RPCs and electronic readout2005: construct prototype section2006: test in particle beams

# Resistive Plate Chamber (RPC):

- Advantage of RPCs
  - Very simple and low cost detector, easy to build
    - Resistive plate: float glass
    - Resistive ink layer: graphite spray / resistive paint, applied by spray / brush / silk screen printing
    - Gas volume spacer: nylon fishing line
  - Robust detector: no ageing effect has ever been observed for glass RPCs
  - Large enough signal, high efficiency, low noise rate
- Rate capability might be a concern in some cases, but not for linear collider
- Ideal for digital calorimeter!

# RPCs built at Argonne

| Name of chamber                                                             | AIR0                  | AIR1                  | AIR2                        | AIR3                         | AIR4                  |
|-----------------------------------------------------------------------------|-----------------------|-----------------------|-----------------------------|------------------------------|-----------------------|
| Date of construction                                                        | 11/2002               | 1/2003                | 1/2003                      | 11/2003                      | 1/2004                |
| Active area                                                                 | 20x20 cm <sup>2</sup> | 20x20 cm <sup>2</sup> | <b>20x20 cm<sup>2</sup></b> | <b>20x20</b> cm <sup>2</sup> | 20x20 cm <sup>2</sup> |
| Number of gas gaps                                                          | 2                     | 2                     | 2                           | 1                            | 1                     |
| Glass thickness                                                             | 0.85 mm               | 1.1 mm                | 1.1 mm                      | 1.1mm                        | 1.1 mm                |
| Thickness of gas gap                                                        | 0.64 mm               | 0.64 mm               | 0.64 mm                     | 1.2mm                        | 1.2 mm                |
| Resistive layer                                                             | Graphite              | Ink                   | Ink                         | Ink                          | Ink                   |
| /applying technology                                                        | /spray                | /brush                | /brush                      | /silk screen                 | /silk screen          |
| Surface resistivity                                                         | ~0.3 MΩ/□             | <b>~0.2 MΩ/</b> □     | ~1.2 MΩ/□                   | ~1MΩ/□                       | ~1MΩ/□                |
|                                                                             |                       |                       |                             |                              | ~50MΩ/□               |
| Streamer signal<br>starting point<br>(Freon/Argon<br>/IsoButane = 62:30:8)  | 7.5 kV                | 6.7 kV                | 6.6 kV                      |                              |                       |
| Streamer signal<br>starting point<br>(Freon/IsoButane<br>/SF6 = 94.5:5:0.5) |                       |                       | 8.7 kV                      | 7.5kV                        | 7.5 kV                |
| Pedestal width                                                              | ~15 fC                | ~8 fC                 | ~8 fC                       | ~40 fC                       | ~90 fC                |

# Summary of Measurements with RPCs

|                     | Tests                                                            | Results                                                                                   |
|---------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Mechanical          | Glass deflection with<br>gas pressure and<br>electrostatic force | p <sub>ES</sub> > p <sub>Gas+</sub><br>No need for gluing spacers                         |
| Single pad readout  | Charge                                                           | Avalanche mode ~0.1 ÷ 5 pC<br>Streamer mode 5 ÷ 100 pC                                    |
|                     | Efficiency                                                       | Greater than 95 %<br>Drops to zero at spacer                                              |
|                     | Streamer fraction                                                | Plateau of several 100 V where<br>efficiency > 95% and<br>streamer fraction < few percent |
|                     | 1 – gas gap versus 2 – gas gap                                   | Larger Q with 1 – gas gap<br>Similar efficiency                                           |
|                     | Noise rate                                                       | Small ~50 Hz                                                                              |
|                     | Different gases                                                  | Best: Freon:IB:SF <sub>6</sub> = 94.5:5:0.5                                               |
| Multi – pad readout | Radius of induced charge                                         | Small << 1 cm                                                                             |
|                     | Pad multiplicity (analog readout)                                | ~2.6 ( Threshold ~ 60 fC)                                                                 |
|                     | Pad multiplicity (digital readout)                               | ~1.4 (Derived from 1.6 Direct)<br>(See later plots)                                       |

# RPC signal: avalanche and streamer

- Large single pad to cover whole chamber
- Two types of signal
  - Avalanche signal
    - Average signal charge: 0.2 – 10+ pc
    - Lower operating voltage
    - Typical efficiency ~99%
    - Very low noise level
    - Rate capability <1kHz/cm<sup>2</sup>
  - Streamer signal
    - Average signal charge: 10 – 100+ pc
    - Higher operating voltage
    - Typical efficiency ~90%
    - Rate capability ~10Hz/cm<sup>2<sup>30</sup></sup>
    - Multiple Streamers





# RPC: 1-gap v.s. 2-gap



### Comparison of AIR4 and AIR3 (both single gap)



as expected...

# **RPC: gas mixture for operation**

|      | Component         | Ar:Freon:IB    | Ar:IB:SF6      | Freon:IB:SF6      |
|------|-------------------|----------------|----------------|-------------------|
|      | Component         | 30:62:8        | Bal:8:(2-40)   | 94.5:5:0.5        |
|      | Operating         | 6-7KV          | 4-6KV          | 8KV/0.6mm gap x 2 |
|      | voltage           | /0.6mm gap x 2 | /0.6mm gap x 2 | 7KV/1.2mm gap     |
| Ą    | Platoau           | 0.2-0.3 KV     |                | 1.0KV/0.6mm x 2   |
| ala  | r lateau          | /0.6mm gap x 2 |                | 0.5KV/1.2mm gap   |
| Incl | Efficiency        | > 90%          | 50 – 70 %      | ~ 08%             |
| he   |                   | /0.6mm gap x 2 | /0.6mm gap x 2 | 3070              |
|      | Signal charge     | 0.2-0.3 pc     | ~0.1 pc        | 1-2pc/0.6mm x 2   |
|      | (pad on one side) | /0.6mm gap x 2 | /0.6mm gap x 2 | 1-5pc/1.2mm gap   |
|      | Starting          | ~7.4KV         | 4-6KV          | 8.8KV/0.6mm x 2   |
| St   | voltage           | /0.6mm gap x 2 | /0.6mm gap x 2 | 7.5KV/1.2mm gap   |
| rea  | Efficiency        | > 90%          | 70 – 90%       | > 0.0%            |
|      | Enciency          | /0.6mm gap x 2 | /0.6mm gap x 2 | > 90 78           |
| ۳ (  | Signal charge     | ~10pc          | ~10pc          | ~10pc/0.6mm x 2   |
|      | Signarcharge      | /0.6mm gap x 2 | /0.6mm gap x 2 | ~40pc/1.2mm gap   |



### Hit multiplicity with avalanche signal: analog readout

- Pads used in this study: 5x5+2:
  - 5x5 array of 1x1cm<sup>2</sup> pads
  - 6 1x5cm<sup>2</sup> strips on the sides of the 5x5 array, they are connected to form a bigger pad
  - The rest area on this 19x19cm<sup>2</sup> board forms another big pad
- Use RABBIT readout system, to measure charge collected on each pad when a cosmic ray passes through the chamber (1 fC/tic)
- A pad is counted in an event if the signal charge collected on the pad exceeds given threshold
- A typical cosmic ray signal has a few 'central pads' collecting most of the signal charge
- Pad-of-hit is the pad that collects the largest amount of charge in an event
- Hit multiplicity is measured with padof-hit among central 3x3 pads



### Central pad with maximum charge: select avalanches



All pads at a given distance from central pad added up

#### **Similar results for streamers**



Sum over all pads at each radius from "central hit"



### Hit multiplicity in streamer mode - Digital Readout



Select events where at least one hit in central array of 9 pads

(With no tagging, can't tell which pad was hit)

High multiplicity: 6 - 11Decreasing with increasing threshold Range of threshold too small:  $\varepsilon$  = constant Threshold circuitry modified: results soon...





# Hit multiplicity study: Avalanche

- Readout board: 3x3 array of 1x1cm<sup>2</sup> pads
- Signal out of each pad is amplified by an on-chamber amplifier (gain ~80\*100 Ω)
- At the moment, no cosmic ray trigger for such a small area.
- ...
- NEW
- We have 32 of 64 pads instrumented with the same amplifiers





# Example Signal Showing Neighboring Pads

- Signal amplitude in adjacent
   1 cm pads is < 10%</li>
- Rise time of signal larger on neighboring pads ?

|    | PreVu                             | [ <b>()</b>  +]                              |                                                             | 🍋 📼                         |
|----|-----------------------------------|----------------------------------------------|-------------------------------------------------------------|-----------------------------|
| 4) |                                   | @: 89.6n                                     | ls @: −6.00mV                                               | Ch3 Coupling<br>& Impedance |
|    |                                   |                                              |                                                             | DC                          |
| 1> | persitional definition of the set | indi terdi tiriny taleportani                | n <del>, wa</del> nahili Minamponiki indoviho (naprilan sa) | AC $\sim$                   |
| 2) |                                   |                                              |                                                             | GND                         |
|    |                                   | A MAMANA AND                                 |                                                             |                             |
| 3  | Ch1 100mV C                       | Ch2 200mV M 40.0ns<br>Ch4 200mV<br>■ 42.40 % | A Ch2 J 100mV                                               | Ω<br>1M 50                  |
| С  | oupling Invert<br>DC Off          | Bandwidth Fine Scale<br>Full /div            | Position Offse<br>-2.60 div 0.000                           | et Probe<br>Setup<br>IV 1X  |

## Avalanche Mode with Digital Readout Efficiency and Multiplicity



# Future System Architecture for 1 m<sup>3</sup>

- System Overview
  - Front End
  - ASIC Front End
  - Data Concentrators
    Near Chambers
    Control

Data Concentration Trigger

- Back End
- VME Data Collectors
- Computing / Storage
- Also
- Trigger System
- Timing System



# Front End ASIC

## • Basic Architecture

- Front End Amplifier & Discriminator Senses Hits Above Threshold
- 24-Bit Timestamp Counter Runs at 10 MHz
- Comparator States Clocked into Shift Register
- Save States & Timestamp on Ext. Trig. or Self-Trigger
- Serial I/O Separate Data, Control, & Trigger
- Services 32-64 CH



#### **Conceptual design of readout pad**





#### **ASIC: Analog signal processing**

#### Each channel has a **preamplifier**

Needed for avalanche mode Can be bypassed (in streamer mode) Provides pulse shaping Provides polarity inversion

# **Physical** Configuration

## ASICs On Chamber

- One RPC Chamber Consists of Several 8x8 Arrays with Chips
- Design Issues: Digital Noise, Buried Digital I/O
- Arrange Data Concentrators on Outside Edge of Chamber

**ASICs RPC** Data Concentrators Power Serial Lines

Data, Control, Trigger

## ASICs Off Chamber

- One RPC Chamber Consists of Several 8x8 Arrays, No Chips
- Signals from Pads Routed to Edge on Internal Layers of the PCB
- Arrange ASICS and Data Concentrators on Outside Edge of Chamber
- Design Issues: Crosstalk, Routing Layers, Capacitance, Noise





#### Conceptual Design of the Amplifier/Discriminator/Timestamp (ADT) ASIC

Gary Drake, José Repond, Dave Underwood, Lei Xia Argonne National Laboratory

ASIC Specification 41 pages

**Charlie Nelson** 

Fermilab

Version 1.20 February 23, 2004

# **ASIC Specification**

## • Implementation with Other Detectors

| Parameter                    | Linear Collider<br>RPCs | Linear Collider<br>GEMS | NUMI Off-Axis<br>RPCs        | Linear Collider<br>Scintillator |
|------------------------------|-------------------------|-------------------------|------------------------------|---------------------------------|
| Туре                         | Avalanche               | (Gas)                   | Streamer                     | Solid, Si PMs                   |
| Geometry                     | Pads                    | Pads                    | Strips                       | Tiles w/Fibers                  |
| Capacitance                  | 10-100 pF               | 10-100 pF               | 110 ohm<br>Transmission Line | ~10 pF                          |
| Smallest<br>Signal           | ~100 fC                 | ~5 fC                   | 1 pC                         | ~100 fC                         |
| Pulse Width                  | ~5 nS                   | ~3 nS                   | ~100 nS                      | ~20 nS                          |
| Rise Time                    | ~2 nS                   | ?                       | ~10 nS                       | ~5 nS                           |
| Largest<br>Signal            | ~10 pC                  | ~100 fC                 | ~100 pC                      | ~10 pC                          |
| Noise<br>Rates               | ~0.1 Hz                 | ?                       | (~10 Hz)                     | ?                               |
| Env. Noise<br>Susceptibility | Low                     | Low                     | Mod (High)                   | Low                             |

## **Cost Estimate for 1 m<sup>3</sup> Prototype Section**

#### • Resistive Plate Chambers (M&S)

| \$1,000<br>\$1,000 |
|--------------------|
| \$1,000            |
| ψ1,000             |
| \$1,000            |
| \$1,500            |
| \$500              |
| \$2,000            |
|                    |

**Total** chambers

\$10,000 + 50% contingency

#### • Electronic Readout System (M&S)

**Total** electronics

FE ASIC (FNAL agrees to cover engineering) FE readout board (pads and ASIC; 360 boards) Data concentrator boards (need 120; each with 4 FPGAs) VME readout (40 cards) Power supplies, optical fibers, HV... \$100,000 \$90,000 \$45,000 \$140,000 \$60,000

\$435,000 + 50% contingency

# Conclusions

- RPC design is well advanced not considered a problem
- Collaboration on electronics is progressing
- Time scales: FY 2004: complete all R&D
  FY 2005: construct 1 m<sup>3</sup> prototype section
  FY 2006: test in particle beams
- The challenge is funding the electronics

Plans for the next few months

### **Application of graphite layer**

More studies with silk screening

#### **Chamber construction**

Assemble larger chamber Test geometrical efficiency

Assemble chamber based on new design Measure efficiency, noise rate, streamer fraction...

### **Multi-channel VME readout**

Complete on pad amplifiers Test chambers in avalanche mode (multiplicity)

#### Prototype electronic readout system

Specify remainder of system Initiate designs of subsystems Prototype subsystems