Determination of the Higgs-boson couplings from WW/ZZ decays in CP-conserving 2HDM (II)

Linear Collider Workshop LCWS'2004 Paris, France, April 19-23, 2004

- Higgs boson production and decays to WW and ZZ at PLC JHEP 0211 (2002) 034 [hep-ph/0207294] measurement of $\Gamma_{\gamma\gamma}$ and $\phi_{\gamma\gamma}$
- Results for SM-like 2HDM(II) scenario B_h hep-ph/0403138
- Results for general 2HDM(II)
- Comparison with LHC and LC

$$\gamma\gamma \rightarrow \mathcal{H} \rightarrow WW, ~ZZ$$

Higgs boson production at the Photon Collider

Production cross section is propor- In SM, dominant contributions to two-photon tional to the two-photon width amplitude A are due to W^{\pm} and top loops.

where:

$$\mathcal{A} = A_W(M_W) + \sum_f N_c Q_f^2 A_f(M_f) + \dots$$

two-photon amplitude

Phases of W^{\pm} and top contributions differ !

Both $\Gamma_{\gamma\gamma}$ and the phase of the amplitude $\phi_{\gamma\gamma}$ depend on Higgs-boson couplings !

$$\gamma\gamma \to \mathcal{H} \to WW, \ ZZ$$

From the simultaneous fit to the observed W^+W^- and ZZ mass spectra both the two-photon width $\Gamma_{\gamma\gamma}$ and phase $\phi_{\gamma\gamma}$ can be determined.

A.F.Żarnecki, ECFA/DESY workshop, November 2002, Praha (including systematic uncertainties)

Solution A

For light Higgs boson *h*:

 $\chi_u = \chi_d = \chi_V = 1$

 χ_i - couplings normalized to SM couplings All couplings are the same as in SM. $\Gamma_{\gamma\gamma}$ and $\phi_{\gamma\gamma}$ affected only by the H^+ loop

For heavy Higgs bosons H and A:

 $\chi_V~\equiv~0$

No decays to W^+W^- and ZZ ...

I. F. Ginzburg, M. Krawczyk and P. Osland, Nucl. Instrum. Meth. A472:149, 2001 hep-ph/0101331; hep-ph/0101208. **Solution** B_h

2HDM(II)

hHA
$$\chi_u$$
 -1 $-\frac{1}{\tan\beta}$ $-i\gamma_5\frac{1}{\tan\beta}$ χ_d $+1$ $-\tan\beta$ $-i\gamma_5 \tan\beta$ χ_V $\cos(2\beta)$ $-\sin(2\beta)$ 0

 $\tan \beta \to 0 \Rightarrow \text{sol. } B_u$

 $\tan \beta \to \infty \Rightarrow$ sol. B_d

Higgs production ($\Gamma_{\gamma\gamma}$ and $\phi_{\gamma\gamma}$) and decays depend on tan β .

Can we extract $\tan \beta$ value from the measured W^+W^- and ZZinvariant mass distributions ?

Light Higgs boson h

Two-photon width and phase measurement for different tan β $\chi_V = \cos 2\beta$

 M_h = 300 GeV

Measurement very sensitive to $\tan \beta$ \Rightarrow precise determination possible.

Ambiguity resolved by the phase measurement (distinguishes between low tan β and large tan β)

 1σ contours for 1 year of PC running statistical errors only M_{H^+} =800 GeV

Heavy Higgs boson H

Two-photon width and phase measurement for different $\tan \beta$ $\chi_V = -\sin 2\beta$

Light Higgs boson h

Expected precision in $\tan \beta$ determination stat. + sys. errors

Heavy Higgs boson H

Expected precision in $\tan \beta$ determination

stat. + sys. errors

 $\tan \beta$ can be determined with precision better than 10% in wide parameter range

Higgs boson couplings

We consider scalar Higgs bosons h and Hin the CP-conserving Two Higgs Doublet Model. Basic couplings, relative to SM:

$$\chi_x = g_{\mathcal{H}xx} / g_{\mathcal{H}xx}^{SM} \quad \mathcal{H} = h, H, A$$

hHA
$$\chi u$$
 $\frac{\cos \alpha}{\sin \beta}$ $\frac{\sin \alpha}{\sin \beta}$ $-i\gamma_5 \frac{1}{\tan \beta}$ χd $-\frac{\sin \alpha}{\cos \beta}$ $\frac{\cos \alpha}{\cos \beta}$ $-i\gamma_5 \tan \beta$ χ_V $\sin(\beta - \alpha)$ $\cos(\beta - \alpha)$ 0

For charged Higgs boson couplings (loop contribution to $\Gamma_{\gamma\gamma}$) we set

$$M_{H^{\pm}} = 800 \ GeV \qquad \mu = 0$$

Higgs couplings are related by "patter relation"

$$(\chi_V - \chi_d)(\chi_u - \chi_V) + \chi_V^2 = 1$$

Instead of angles α and β we use couplings χ_V and χ_u to parametrize cross sections and BRs.

As the overall sign of Higgs couplings does not matter we choose

$0 \leq \chi_V \leq 1$

If we neglect H decays to h and A(small) cross sections and BRs calculated for H are also valid for h

Combined fit to W^+W^- and ZZ invariant mass distributions

Higgs-boson couplings from $\mathcal{H} \to WW, ZZ$

H couplings to vector bosons (χ_v) and up fermions (χ_t) from combined fit to W^+W^- and *ZZ* invariant mass distributions

Comparison of estimated statistical and total (stat+sys) errors of the measurement.

 1σ contours for 1 year of PC $M_H = 300 \text{ GeV}$

Coupling errors

Estimated total errors on Higgs boson couplings for M_H =300 GeV (1 year of PC running)

For a wide range of couplings $\Delta \chi_v \leq 0.1$ $\Delta \chi_t \leq 0.4$

LHC

In the considered mass range Higgs production at LHC is dominated by the gluon fusion process (top loop)

$$\sigma(gg
ightarrow h) ~\sim~ \chi_t^2$$

WW fusion process (\sim 15%)

$$\sigma(qq
ightarrow qqh) ~\sim~ \chi_V^2$$

Measurement of

 $\sigma(pp \rightarrow hX) \cdot BR(h \rightarrow ZZ \rightarrow 4l)$

is possible with precision $\sim 15\%$ (SM-like scenario, 30 fb⁻¹) CMS TN/95-018, CMS CR/2002-020

This will constrain the $|\chi_t|$ value, provided χ_V is not too small.

Cross section relative to SM

LC

At LC, two processes contribute to the Higgs boson production

Cross section is sensitive only to χ_V

Measurement of

 $\sigma(e^+e^- \to hX) \cdot BR(h \to WW/ZZ)$

is possible with precision $\sim~4-7\%$ N.Meyer LC-PHSM-2003-066

(SM-like scenario, $\sqrt{s} = 500 \ GeV$, 500 fb⁻¹)

This will constrain the χ_V value

1115

Cross section relative to SM

Allowed coupling values (1σ) from cross section measurements at LHC, LC and PLC, and the phase measurement at PLC.

Consistency of all these measurements verifies the coupling structure of the model

statistical errors only

$$\chi_v = 0.5$$
 $\chi_t = 1.1$ $M_H = 300 \text{ GeV}$

Allowed coupling values from cross section measurements at LHC, LC and PLC, and the phase measurement at PLC.

Inconsistency would indicate "new physics":

- different coupling structure or
- existence of new heavy particles contributing to Γ_{gg} and $\Gamma_{\gamma\gamma}$

Results for 2HDM (II) with weak CP violation:

Summary

Using W^+W^- and ZZ final states both the partial width $\Gamma_{\gamma\gamma}$ and the phase of the $\mathcal{H} \to \gamma\gamma$ amplitude $\phi_{\gamma\gamma}$ can be measured. Mass range 200 < $M_{\mathcal{H}}$ < 350 GeV considered.

Strong dependence on Higgs boson couplings is expected for SM-like 2HDM (II) sol. B_h Both *h* and *H* boson decays can be used for precise determination of tan β . Precision better than 10% is obtained in wide parameter range.

In the general 2HDM (II), Higgs boson couplings to both vector bosons (χ_v) and up fermions (χ_t) can be determined

By combining measurements from LHC, LC and PLC coupling structure and particle contents of the model can be tested.

$\gamma\gamma \to \mathcal{H} \to WW, \ ZZ$

We consider Higgs boson production and decays to WW/ZZ, for masses 200–350 GeV.

For resonant $\gamma \gamma \rightarrow h \rightarrow W^+W^-$ signal Large interference effects are expected in the considered mass range **J=0** 100 σ [**pb**] N. f. H⁺... 170 GeV NŻK $W^{-}(Z)$ 80 there is a large non-resonant bg. 300 GeV 60 200 GeV 250 GeV 40 no higgs γγ→WW with higgs 20 0 <u>⊢</u> 150 200 250 300 350

Interference is sensitive to the phase of the two-gamma amplitude

W_{vv} [**GeV**]

$\gamma\gamma \to \mathcal{H} \to WW, \ ZZ$

Simulation

 $\gamma\gamma$ spectra from **CompAZ** hep-ex/0207021

 $\gamma\gamma \rightarrow W^+W^-$, ZZ events generated with PYTHIA 6.152

events reweighted to take into account:

- beam polarization
- Higgs production and interference

detector simulation with SIMDET v. 3.01

total $\gamma\gamma$ luminosity: 600 – 1000 fb^{-1}

High $W_{\gamma\gamma}$ peak: 75 - 115 fb^{-1}

for $\sqrt{s_{ee}}$ = 305 – 500 GeV

Parametrization

"Measured" invariant mass distribution for selected W^+W^- and ZZ events is described by convolution of:

- Analytical luminosity Spectra CompAZ
- Cross section formula for signal + background + interf.
- Invariant mass resolution parametrized as a function of $W_{\gamma\gamma}$

 \Rightarrow mass spectra can be calculated for any $\sqrt{s_{ee}}$ and m_h without time-consuming MC simulation

 \Rightarrow can be used for fast simulation and fitting

overall normalization

Higgs boson mass

Higgs boson width

relative normalization of WW and ZZ samples fixed

Systematic uncertainties

Influence of systematic uncertainties on the $\tan \beta$ determination is estimated by adding additional free parameters to the fit:

Uncertainties:

Parameters:

- Iuminosity
- energy scale
- Higgs boson mass
- mass resolution
- Higgs boson width
- Iuminosity spectra \Rightarrow spectra shape variations:

 $\frac{dL}{dW_{\gamma\gamma}} = \frac{dL^{CompAZ}}{dW_{\gamma\gamma}} (1 + A \cdot \sin \pi x + B \cdot \sin 2\pi x) \quad x = \frac{W_{\gamma\gamma} - W_{min}}{W_{max} - W_{min}}$

Light Higgs boson h

Influence of systematic uncertainties for $M_h = 200 \text{ GeV}$ and $M_h = 300 \text{ GeV}$

Heavy Higgs boson H

Influence of systematic uncertainties for $M_H = 300 \text{ GeV}$

Basic relative coupling to down-type fermions as a function of vector boson and top (up-type fermions) couplings:

$$\chi_d = \chi_V + \frac{1 - \chi_V^2}{\chi_V - \chi_u}$$

Coupling errors

Estimated total errors on Higgs boson couplings for M_H =200 GeV (1 year of PC running)

