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What is observed: Jet physics


A schematic view of electron-positron annihilation.


A four-jet event from the Aleph experiment at LEP:


Jets: A bunch of particles moving in the same
direction







A rough description by event generators


Event generators rely on a three-stage process:


hard scattering parton
showering


hadronization


Showering and hadronization depends on approximations and/or models.


For infrared-safe observables we can do better !







Modeling of jets:


In a perturbative calculation jets are modeled by only a few partons. This improves
with the order to which the calculation is done.


At leading order:
ycut


At next-to-leading order:
ycut ycut


At next-to-next-to-leading
order:


ycut ycut ycut







Infrared-safe observables and event shapes


Observables which do not depend on long-distance behaviour, are called infrared-safe
observables and can reliably be calculated in perturbation theory.


In particular, it is required that they do not change value, if infinitessimal soft or collinear
particles are added.


On+l(p1, ..., pn+l) → On(p′1, ..., p′n),


Infrared-safe event shape observables, like thrust, jet broadening or aplanarity reveal
more information about an event then the total cross section alone.


Example: Thrust


T = maxn̂


∑
i
|~pi · n̂|


∑
i
|~pi|







The need for NNLO calculations


Hunting for the Higgs and other yet-to-be-discovered particles requires a better
knowledge of the theoretical cross section.


The strong coupling constant αs is one fundamental parameter of the theory and its
precise value affects the magnitude of many (background) processes.


The next generation of colliders will increase the experimental precision. This has
to be matched by an improvement in the accuracy of theoretical predictions.


Theoretical predictions are calculated as a power expansion in the coupling. Higher
precision is reached by including the next higher term in the perturbative expansion.


What is necessary:


NNLO calculations







Perturbative NNLO calculations


The experimental needs are numerical programs which yield predictions for a wide
range of observables.


Fully differential NNLO programs for processes like


• Bhabha scattering


• pp→ 2 jets


• e+e− → 3 jets


which allow the calculation of any infrared safe observable.







e+e− → 3 jets


• Measurement of αs using data of e+e− → 3 jets at the Z-peak. A NNLO calculation
is expected to reduce the theoretical error in the extraction of αs down to 1%.


• A NNLO calculation models the jet structure more accurately and should allow
to improve the knowledge on the interplay between perturbative QCD and power
corrections.







Higher orders and power corrections


Currently: Experimental data = NLO prediction + power corrections
Higher orders may reduce the size of the power corrections needed to fit the data
(N. Glover)


Example: Thrust


〈1−T〉 ≈ 0.33αs+1.0α2
s +A3α3
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Red curve: λ = 0 GeV, A3 = 0;
Blue curve: λ = 1 GeV, A3 = 0;
Green curve: λ = 0.5 GeV, A3 = 3;


Data is not good enough to discriminate between the functional forms λ
Q and 1


lnn(Q
Λ)


.







Theoretical uncertainties


The theoretical prediction should be independent of µr .


The change due to varying the scale is formally of higher order:
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for a 3-jet observable.


µr variation is only an estimate of higher order terms.


A large variation means that predictable higher order terms are large - but does not
say anything about the new terms.







Necessary ingredients for a NNLO calculation


• Calculation of the (two-loop) amplitudes.


Requires: Two-loop integrals and tensor reduction.


• Cancellation of IR divergences has to be done before any Monte Carlo integration.


Requires: Extension of the subtraction or slicing method to NNLO.


• The final numerical computer program.


Requires: Stable and efficient numerical methods.







The amplitudes for e+e− → 3 jets at NNLO


A NNLO calculation of e+e− → 3 jets requires the following amplitudes:


• Born amplitudes for e+e− → 5 jets:
F. Berends, W. Giele and H. Kuijf.


• One-loop amplitudes for e+e− → 4 jets:
Z. Bern, L. Dixon, D.A. Kosower and S.W.;


J. Campbell, N. Glover and D. Miller.


• Two-loop amplitudes for e+e− → 3 jets:
L. Garland, T. Gehrmann, N. Glover, A. Koukoutsakis and E. Remiddi;


S. Moch, P. Uwer and S.W.







The calculation of two-loop integrals


• The first double box integrals with the help of Mellin-Barnes formula,
Smirnov ’99, Tausk ’99.


• More refined techniques:


– Differential equations and integration-by-parts, Gehrmann, Remiddi ‘00.
– Nested sums, Moch, Uwer, S.W. ‘01.
– Reduction algorithm, Tarasov ‘96, Laporta ’01.


• Calculation of two-loop amplitudes


– Bhabha, Bern, Dixon, Ghinculov ‘01.
– pp→ 2 jets, Anastasiou, Glover, Oleari, Tejeda-Yeomans ’01;


Bern, De Freitas, Dixon, Ghinculov, Wong ’01.
– e+e− → 3 jets, L. Garland, T. Gehrmann, N. Glover, A. Koukoutsakis and E. Remiddi;


S. Moch, P. Uwer and S.W.







Infrared divergences and the Kinoshita-Lee-Nauenberg the orem


In addition to ultraviolet divergences, loop integrals can have infrared divergences.


For each IR divergence there is a corresponding divergence with the opposite
sign in the real emission amplitude, when particles becomes soft or collinear (e.g.
unresolved).


The Kinoshita-Lee-Nauenberg theorem: Any observable, summed over all states
degenerate according to some resolution criteria, will be finite.







General methods at NLO


Fully differential NLO Monte Carlo programs need a general method to handle the
cancelation of infrared divergencies.


• Phase space slicing


– e+e−: W. Giele and N. Glover, (1992)
– initial hadrons: W. Giele, N. Glover and D.A. Kosower, (1993)
– massive partons, fragmentation: S. Keller and E. Laenen, (1999)


• Subtraction method


– residue approach: S. Frixione, Z. Kunzst and A. Signer, (1995)
– dipole formalism: S. Catani and M. Seymour, (1996)
– massive partons: L. Phaf and S.W. (2001),


S. Catani, S. Dittmaier, M. Seymour and Z. Trócsányi, (2002)







The subtraction method at NLO


The dipole formalism is based on the subtraction method. The NLO cross section is
rewritten as


σNLO =
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∫
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The approximation dσA has to fulfill the following requirements:


• dσA must be a proper approximation of dσR such as to have the same pointwise
singular behaviour in D dimensions as dσR itself. Thus, dσA acts as a local
counterterm for dσR and one can safely perform the limit ε → 0.


• Analytic integrability in D dimensions over the one-parton subspace leading to soft
and collinear divergences.







An example: e+e− → 2 jets at NLO


The matrix element squared for γ∗ → qgq̄:


M3 = 8(1− ε)
[
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The subtraction terms:
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An example involving double unresolved configurations


The leading-colour contributions to e+e− → qggq̄.


Double unresolved configurations:


- Two pairs of separately collinear particles
- Three particles collinear
- Two particles collinear and a third soft particle
- Two soft particles
- Coplanar degeneracy


Single unresolved configurations:


- Two collinear particles
- One soft particle


p1
p2
p3


p4


p1
p2


p3


p4


p1
p2


p3
p4







The subtraction method at NNLO


• Singular behaviour


– Factorization of tree amplitudes in double unresolved limits, Berends, Giele, Cambell,


Glover, Catani, Grazzini, Del Duca, Frizzo, Maltoni, Kosower ’99


– Factorization of one-loop amplitudes in single unresolved limits, Bern, Del Duca, Kilgore,


Schmidt, Kosower, Uwer, Catani, Grazzini, ’99


• Interpolation and construction of subtraction terms, Kosower ’03, S.W. ’03, Kilgore ’04


• Integration, either analytically or by sector decomposition, S.W. ’03, Anastasiou, Melnikov,


Petriello ’03, Gehrmann-De Ridder, Gehrmann, Heinrich ’03, Binoth, Heinrich ’04, Gehrmann-De Ridder, Gehrmann,


Glover ’04


• Applications:


– pp→W, Anastasiou, Dixon, Melnikov, Petriello ’03,


– e+e− → 2 jets, Anastasiou, Melnikov, Petriello ’04,







Outlook


NNLO needed to reduce the theoretical uncertainty.


• Calculation of two-loop amplitudes: Nested sums provide an efficient way to
calculate two-loop integrals.


• Cancellation of IR divergences: Extension of the subtraction method to NNLO.


– Construction of the subtraction terms
−→ Subtracted matrix elements can be integrated numerically !


– Integration of the subtraction terms for one-loop amplitudes with one unresolved
parton.


– To be done: Analytic integration over the unresolved phase space for double
unresolved terms.


• To be done: The final numerical computer program.






