Test-beam Facilities at DESY, Frascati and Serpukhov

What do we want to measure ?

- 1. Calorimetric response for all particle types
 - -- to test various ECAL/HCAL options and
 - --get large quantities of data to
- study optimal cluster reconstruction with data,
- also at different incidence angles and
- tune the simulation programs
 - --statistics: 10⁶ per setting, ~10² settings ?
- 2. Clustering studies in showers of individual particles
- 3. Jet resolution and separation studies,
 - to test/tune particle flow reconstruction
 - different combinations of e, h, $\gamma,~\mu$ combined to individual jet
 - -2 or more jets overlayed with small opening angles \geq 6 mrad
- 4. Sensitivity to detection/measurement of "Missing Energy"

What we ask for...

to consider for test beam to choose:

Criteria:

- Availability! Need several month/year in 2005, 2006,?
- Large Area (6x5 m²), for beam triggers, calorimeters on moving table, TC
- Sufficient beam trigger rate, ~10⁶ events/day ?
- Cerenkov beam counters, for selection of e, p, k, P?
- Hadron energy range 1 ~80 GeV ?
- Electron energy range 1 ~10 GeV ?
- Large tail catcher (>3 λ), available from NIU
- Wide area μ -beam (~1m²), for cell/tile calibration with MIPs
- Local infra structure, support in machining, installation, communications, ...
- Fast "global network" connections
- Remote detector control for experts from home-lab
- Acceptable visiting conditions (re-enterable visa etc.) for all TB collaborators !!!
- V. Korbel, DESY and CALICE LCWS2004, Paris

DESY, Electrons only

Synchrotron DESY II

accelerates/decelerates one bunch of 2*10¹⁰ electrons

(resp 6*10⁹ positrons)

- frequency of 12.5 Hz up to 7 GeV (for HERA via PETRA).
- •The revolution frequency is 1 MHz,
- the RF frequency 500 MHz, and thus
- the bunch length around 30 ps
- DESY II offers 3 test beams...
- Electrons or positrons, 1 to 6.5 GeV,
- also 2 e in 30 psec bunch possible (>>> ~12 GeV)
 <u>Possible use:</u>
 - -- Electromagnetic energy resolution
 - -- shower width studies and
 - -- γ -cluster separation
 - For ECAL studies mainly,
 - also used for sub-volume of Tile-HCAL >> minical >>

Test beams at DESY

DESY test beams, secondary beams

Rates

In table 1 you can find a rough estimate of the rates.

The rates are influenced by many parameters. In practice, the maximum rate around 1 kHz (3 GeV, 3mm Cu convert, Collimator ca. 5mm x 5mm, DESY II maximum energy at 7 GeV, no beam extraction, no DESY III ramp).

Rates	Target		
Energy	3mm Cu 1mm Cu		
1 GeV	~330Hz	~220Hz	
2 GeV	~500Hz	~330Hz	
3 GeV	~1000Hz	~660Hz	
5 GeV	~500Hz	~330Hz	
6 GeV	~250Hz	~160Hz	

More info at:

http://desyntwww.desy.de/~testbeam/ and Norbert.Meyners@desy.de

V. Korbel, DESY and CALICE LCWS2004, Paris

Test beams at Frascati

V. Korbel, DESY and CALICE

Energy Range 25-750 MeV e⁻/e⁺ Max. Repetition Rate 50 Hz Pulse Duration 1-10 ns Current/pulse 1 to 10¹⁰ particles Allowed Current 10³ pulses/sec Test area ~6,5 x 8 m²

<u>http://www.lnf.infn.it/acceleratori/btf</u>
Nucl Instrum. Meth. A515 (2003) 516 and
<u>Stefano.Miscetti@lnf.infn.it</u>

LCWS2004, Paris

Proposal for a TESLA beam test zone at IHEP (Protvino)

Vladimir Obraztsov

Institute for High Energy Physics Protvino Moscow region, Russia

Presented in ECFA-DESY workshop, Prague, 2002

IHEP accelerator parameters:

- accelerator is a 70 GeV proton synchrotron
- intensity ~ $1 \cdot 10^{13}$ p/cycle
- cycle time 10 s,
- spill time 1.8 s
- RF structure: bunch length 40 ns, bunch spacing 160 ns
- beams are extracted protons from internal targets
- more info:

ammosov@mail.desy.de, obraztso@oka.ihep.su

Protvino, beam line parameters

Electron beam

- Beam line #2B from internal target is used
- Negative beam
- Momentum range (1-45) GeV/c
- Beam energy spread to large, but ok for TESLA ECAL requirements?
- Improvement of beam momentum definition
- measurement by tagging system possible

Energy,	Beam	ECAL
GeV	resol.,	resol.,
	%	%
1	4.3	11.0
2	5.5	7.8
5	5.6	4.9
10	3.8	3.5
27	1.2	2.1
45	1.0	1.6
		40/40

V. Korbel, DESY and CALICE

LCWS2004, Paris

12/18

Protvino, beam set-up

Beam detector system

 $S_1 \div S_4$, A_1 , A_2 - scintillation counters PC_1 , PC_2 - proportional chambers H_1 , H_2 - scintillation hodoscopes C_1 , C_2 - threshold cherenkov counters D_1 , D_2 - differential cherenkov counters S_{TOF} - time-of-flight scintillation counter

Protvino, beam line parameters

from PbWO4 array

Admixtures of h^- and μ^-

allow to measure calorimetric response simultaneously for e^{-} , h^{-} and μ^{-} using Cerenkov counters

Protvino, Beam line parameters

Special enriched hadron beam by modified converter area

- Neg. beam, momentum range 33-55 GeV/c
- Intensity for $\Delta p/p = \pm 1\%$
- Beam spot, \varnothing ~ 2.5 cm
- Beam composition:

π^{-}	96.4 %
μ	1.0 %
k⁻	2.3 %
p	0.3 %

All particles available:

Particle type	Electron beam	Hadron beam	
	range, GeV/c	range, GeV/c	
e	1- 45	-	
h	1- 45	33 - 55	
μ	1- 45	33 - 55	

Energy,

GeV

33

40

55

V. Korbel, DESY and CALICE

Intensity

in spill

on 10¹² pot

 1.10^{6}

 3.10^{6}

 2.10^{5}

Protvino test beams, conclusions:

Existing

- beam line can be set up for electrons 1-45 GeV
- e-beam tagging system exists
- same beam line alternative for hadrons, 33–55 GV
- >> all tests can be done in 1 beam line
- beam set up ready in late 2004 ?
- good secondary particle identification with 4 Cerenkov counters
- all infrastructure available
- running costs for ~360 hours in 2005 and 2006 would be contribution from IHEP ! (certainly more time needed)
- large magnet available, ECAL would fit in...

My summary to conclude:

laboratory	DESY	Frascati	Serpuchov
particles	e⁺, e⁻	e+, e-	e,γ; π, k, p; μ
energie, electrons	1-6.5; (<12) GeV	20-750 MeV	1-45 GeV
energies, hadrons	-	-	1-45 GeV, 33-55 GeV
beam size	up to 35 x35 mm	2x2; max. 55x25mm ²	few cm ²
momentum definition	~3,1%	~1%	1, few %
beam height above ground floor	1,70 m	1,24 m	2,15 m
lateral space available (+/-x)	.+/- 2-3 m	3,8 m ?	. +/- 3 m
longitudinal space?	> 10 m	~8 m	> 10 m
beam trigger system	fingers, veto	Y	Y
crane available to move 6 to?	25 to	36 to	Y
separate counting house	several	Y	Y
е/π	no	no	see details
μ–bg for calibration/monitoring	no π's	no π's	1 m²/ 10 ⁶
Ethernet connections beam area	Y	Y	Y
internet, high speed	Y	Y	Y
beam, availability 2005	> 3 months/year	(6months typical)	2 months/year
beam availability 2006	> 3 months/year	(6months typical)	2 months/year
local support, experts	Y	Y	Y,?
remarks:	energy sufficient for ECAL	high intensity beam	all tests in 1 beam line
contact:	Norbert.Meyners@desy.de	Stefano.Miscetti@Inf.infn.it	obraztso@oka.ihep.su

V. Korbel, DESY and CALICE

LCWS2004, Paris

Beam tests with calorimeter in magnet?

