Test-Facilities at SLAC and at other North American Labs Colloque international sur les collisionneurs linéaires April 22nd, 2004 ---- Paris, France LCWS04 LLNA TRIUMF LBNL **SLAC** A-Line and End Station A transparencie /I. Woods and **F**.Fieauth

Cornell, Jefferson Lab

Carsten Hast (SLAC)

Radiation Tests at Livermore (LLNL)

Livermore has a photo injector and a thermionic gun (currently not operable but they want to get it going again)

followed by a 4 section linac which gives 90 – 150 MeV electrons

- They can make short pulses < 300 fsec
- Radiation levels are 10⁶ 10⁸ rad/hour
- Charge in a pulse is $1.5 2 \mu C$
- Quite large neutron flux

Seems to be quite uncomplicated to get beam time

(helps to be American due to security issues at Livermore)

Contact is: Aaron Tremaine [tremaine1@llnl.gov]

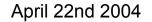
Thermionic injector and RF linac

LLNL Linac Specs

Long Pulse Mode

Short Pulse Mode

Repetition rate	up to 300	Hz
Micropulses per macropulse	~8000	
Micropulse charge	~0.25	nC
Macropulse charge	1.96	uC
Macropulse Length	up to 2.8	usec
Micropulse Length	~30	ps
Beam Energy	13-130	MeV
Micropulse current	8.4	А
Macropulse current	0.7	А
Average current	0.6	mA
Normalized emittance	260	mm-mrad
Radiation dose	10^6 to 10^8	R/h at 1 m
Minimum spot radius (at 100 MeV)	260	microns
Peak current density	4	kA/cm^2


Repetition rate	up to 1440	Hz
Micropulses per macropulse	6 to 60	
Micropulse charge	~ 2	nC
Macropulse charge	up to 120	nC
Macropulse Length	2 to 20	nsec
Micropulse Length	~30	ps
Beam Energy	13 to 130	MeV
Micropulse current	120	A
Macropulse current	10	A
Average current	173	uA
Normalized emittance	260	mm-mrad
Radiation dose	10^5 to 10^7	R/h at 1 m
Minimum spot size	260	microns
Peak current density	34	kA/cm^2

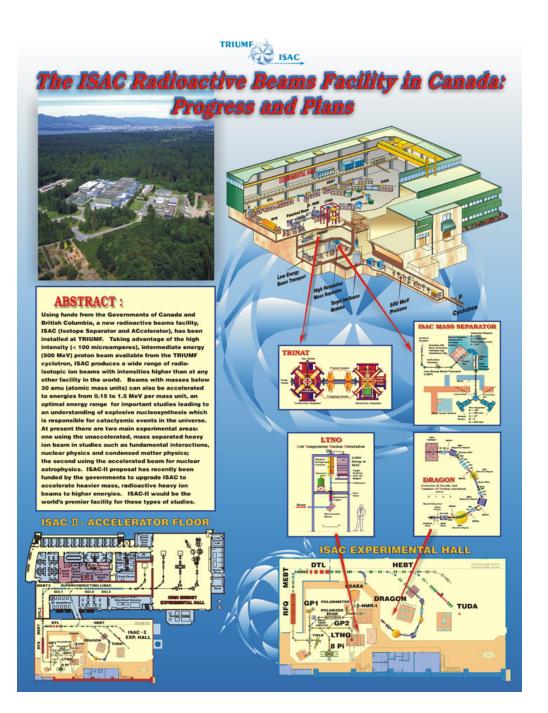
Measured: 1-100 Rad per shot with Brem. X-rays

Measured: Megarad doses into targets using the beam directly

With 77.5 MW total RF power, 650 mA macropulse current, 92 MeV beam energy, 300 Hz PRR, and 2.8 μs pulse length maximum average beam power is 50.4 kW

Photoinjector at 5 MeV: Measured on test-stand		Photoinjector at 30-100 MeV	Photoinjector at 30-100 MeV:		
Repetition rate	10	Hz	Repetition rate	10	Hz
Pulse length	1 to 10	psec	Pulse length	1 to 10 (<350 fs compressed)	psec
Beam energy	5	MeV	Beam energy	5-100	MeV
Peak current	up to 100	А	Peak current	up to 100 (~800 compressed)	А
Normalized emittance	< 10	mm-mrad	Normalized emittance	9.3	mm-mrad
Minimum spot radius	50	microns	Minimum spot size measured	70	microns
Peak charge density	6.4	MA/cm^2	Peak charge density	32	MA/cm^2

TRIUMF's Radioactive Beams Facility


ISAC (Isotope Separator and Accelerator)

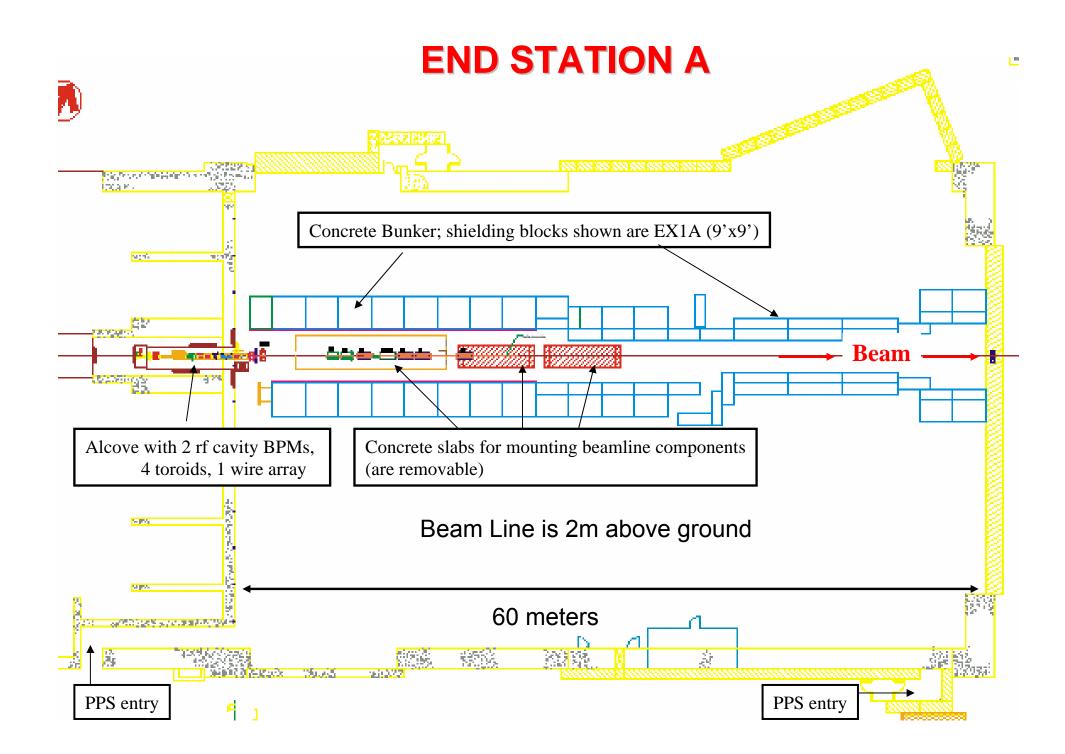
• Looks great for studying neutron damage

(or other heavier isotopes)

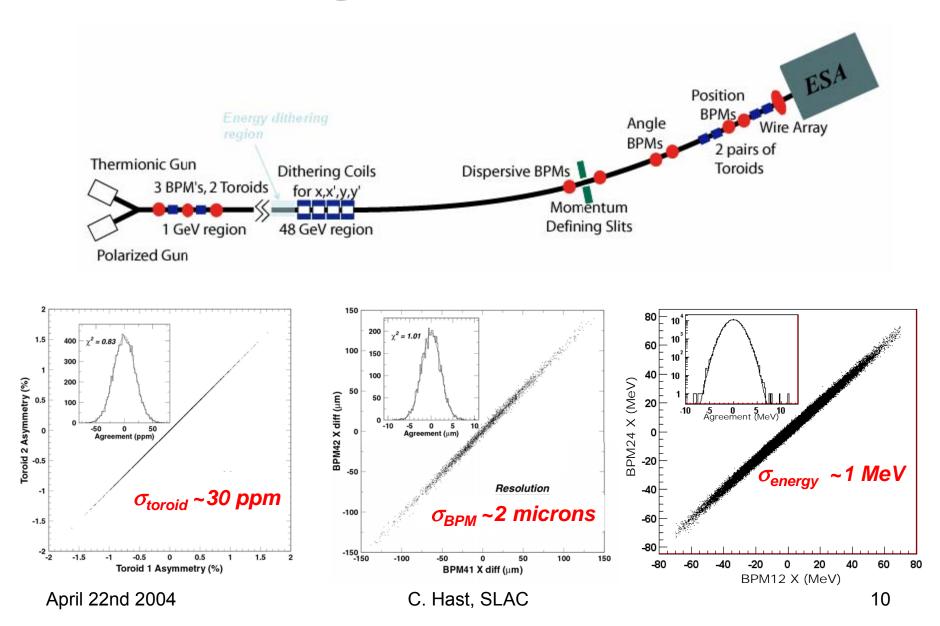
- They are doing research, but I have not seen any direct advertisement of radiation damage tests
- I didn't get a reply to some questions I send to someone
 I found on the web, but I didn't try too hard either...

http://www.triumf.ca/isac/isac_home.html

April 22nd 2004


Berkley (LBNL)

 Didn't find out any specifics only that they do have beams for doing radiation tests (I know they did some readout electronics irradiation for BaBar)



Beam Parameters at SLAC ESA, NLC-500, and TESLA-500

Parameter	SLAC ESA	NLC-500	TESLA-500
Charge/Train	5 x 10 ¹¹	14.4 x 10 ¹¹	
Repetition Rate	10-30 Hz	120 Hz	5 Hz
Energy	25-50 GeV	250 GeV	250 GeV
e ⁻ Polarization	85%	80%	80%
Train Length	270ns / 340ns	267ns	1 ms
Microbunch spacing	0.3ns / 340ns	1.4ns	337 ns
Bunches per train	2		2820
Bunch Charge	2.0 x 10 ¹⁰		2.0 x 10 ¹⁰
Energy Spread	0.15%	0.3%	0.1%

Beam Diagnostics for E-158

Secondary Beams to ESA

POSITRON PRODUCTION

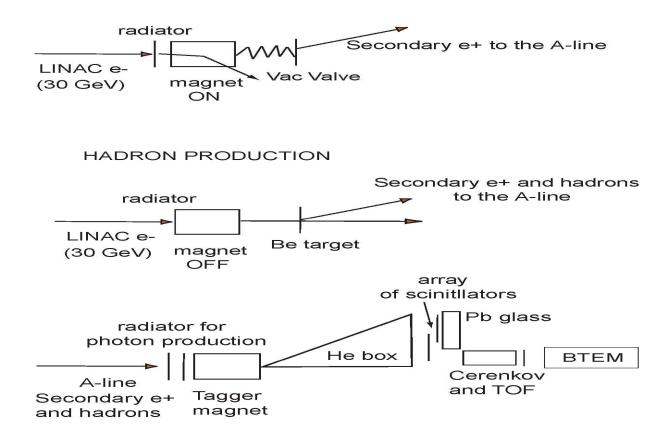


Figure 2: A schematic drawing (not to scale) of the experimental set–up.

April 22nd 2004

Secondary Beams to ESA cont.

These low intensity beams have been useful for many calorimeter and other tests

1) Secondary electrons

- 500 MeV to 20 GeV
- usually one particle/pulse, but 3-4 mm rms half-width spot
- High momentum resolution

2) Tagged photon beam using secondary e- (see above) on a bremsstrahlung target with tagging magnet and detector in the end station

3) Hadrons and positrons are produced with a 0.5 r.l. Be target in Beam switchyard (BSY)
Accepted into A-line at a 0.5 degree production angle. Small Acceptance 2.3x4 cm over 80 m drift.
Averaging one particle/pulse allows use of TOF and Cherenkov techniques for particle identification for 5-20 GeV.

• At 14.5 GeV for 0.4 particles/spill total the yield was

0.25 e+/spill 0.17 hadrons(K+,π+)/spill 0.01 protons/spill

see GLAST 1999 test results, SLAC-PUB-8682

April 22nd 2004

End Station A

Is big, ...

empty, ...

...and ready for business

April 22nd 2004

FFTB

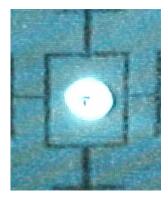
Primary Beams

- 28.5 GeV electrons
- 1-2 x 10¹⁰ per pulse.
- typically 3ps pulse,
- small emittance, $\sigma_x = 4\mu m$, $\sigma_y = 2.5\mu m$, or SPPS short pulse with larger energy spread, have achieved $\sigma_x = 20\mu m$, $\sigma_y = 20\mu m$ and $\sigma_s = 90\mu m$ for T465 test beam,
- 1-30 Hz.
- Loss limited to 1 kW by shielding

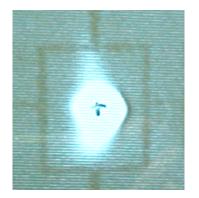
Secondary Beams

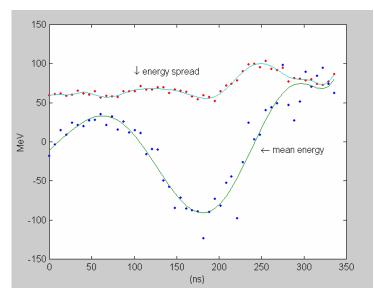
- These low intensity beams have been useful for many EMC tests and other tests.
- 1 to 30 GeV,
- usually one electron/pulse,
- several mm spot,
- 10-30 Hz

SLAC Test Beams in the Future

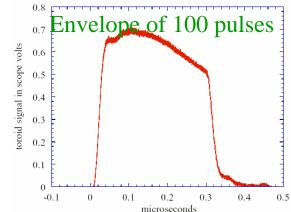

- Running of ESA or FFTB are mutually exclusive
- FFTB will go away in 2006 to make place for LCLS
- Until then there are many opportunities to schedule beam tests in FFTB
- ESA is in principal available for high power or single particle tests starting this summer

For all tests which take a significant amount of beam


(= electrical power and time) there is some formality to be dealt with: at least a Test Beam Request for something short (a week or so) or an EPAC presentation


Backup Slides

ESA can provide clean beams (little halo or beam tails)



Or can provide beams with tails!

Can provide "banana" beams in energy by pulse shaping source laser intensity

Can translate banana energy distribution to banana spatial distribution by introducing dispersion April 22nd 2004 C. Hast, SLAC