Neutral Higgs Boson Production and CP Violation at the LC

Kang Young Lee (KAIST, Korea)

in collaboration with

C.S. Kim and Chaehyun Yu (Yonsei Univ., Korea)

Introduction

- Higgs Boson in the Standard Model
 - Only one neutral scalar exists
 - Remnant of the electroweak symmetry breaking
 - SM Higgs boson production at the LC

$$e^{-}e^{+} \rightarrow ZH,$$

$$e^{-}e^{+} \rightarrow W^{-}W^{+}H, \qquad e^{-}e^{+} \rightarrow ZZH,$$

$$e^{-}e^{+} \rightarrow t^{-}t^{+}H,$$

- Higgs boson branching ratios

$$H \rightarrow b\bar{b},$$

$$H \rightarrow W^{-}W^{+}$$

$$H \rightarrow ZZ$$

$$H \rightarrow t\bar{t},$$

• 2 Higgs Doublet Extension

- The simplest extension of Higgs sector
- 3 neutral Higgs boson + 1 pair of charged Higgs boson
- Preserves $\rho \equiv m_W/(m_Z \cos \theta_W) = 1$ up to finite radiative correction
- Dangerous Higgs-mediated flavour-changing neutral interactions exist at tree-level in general
 - ightarrow Models of 3 type in Yukawa couplings have been suggested
- type I : Only one Higgs doublet couples to the fermions
- type II: One Higgs doublet couples only to up-type quarks and the other Higgs doublet couples only to down-type quarks.
 This model arises in the MSSM
 - \leftarrow by imposing a discrete symmetry
- type III : Tree level Higgs-mediated FCNC are present and suppressed
 - \rightarrow Spontaneous and explicit CP violation in the Higgs sector are possible.

Two Higgs Doublet Model with CP Violation

- Analysis on the Higgs potential
 - The Higgs potential

$$V = \frac{1}{2}\lambda_{1}(\phi_{1}^{\dagger}\phi_{1})^{2} + \frac{1}{2}\lambda_{2}(\phi_{2}^{\dagger}\phi_{2})^{2} + \lambda_{3}(\phi_{1}^{\dagger}\phi_{1})(\phi_{2}^{\dagger}\phi_{2}) + \lambda_{4}(\phi_{1}^{\dagger}\phi_{2})(\phi_{2}^{\dagger}\phi_{1})$$

$$+ \frac{1}{2}[\lambda_{5}(\phi_{1}^{\dagger}\phi_{2})^{2} + H.c.] + [\lambda_{6}(\phi_{1}^{\dagger}\phi_{1})(\phi_{1}^{\dagger}\phi_{2}) + \lambda_{7}(\phi_{2}^{\dagger}\phi_{2})(\phi_{1}^{\dagger}\phi_{2}) + H.c.]$$

$$-m_{11}^{2}((\phi_{1}^{\dagger}\phi_{1}) - m_{22}^{2}((\phi_{2}^{\dagger}\phi_{2}) - [m_{12}^{2}((\phi_{1}^{\dagger}\phi_{2}) + H.c.]]$$

- NFC : Z_2 symmetry imposed,

$$\phi_1 \to -\phi_1, \qquad \phi_2 \to \phi_2.$$

$$\rightarrow \lambda_6 = \lambda_7 = m_{12}^2 = 0$$

- → Tree level FCNC and CP violation are absent.
- Soft violation : allow $m_{12}^2 \neq 0$

- The minimum of the potential

$$\langle \phi_1 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_1 \end{pmatrix}, \qquad \langle \phi_2 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_2 e^{i\xi} \end{pmatrix},$$

parametrized by

$$\tan \beta = \frac{v_2}{v_1}, \qquad v^2 = v_1^2 + v_2^2$$

- By minimizing the potential

$$\operatorname{Im}(m_{12}^2 e^{i\xi}) = v_1 v_2 \operatorname{Im}(\lambda_5 e^{2i\xi})$$

– The global transform $\phi_i
ightarrow e^{i arphi_i}$ with the rephasing;

$$\lambda_5 \to \lambda_5 e^{-2i(\varphi_2 - \varphi_1)}, \quad m_{12}^2 \to m_{12}^2 \ e^{-i(\varphi_2 - \varphi_1)},$$
 $\xi \to \xi + \varphi_2 - \varphi_1,$

with $\lambda_i, i = 1, 2, 3, 4$ and $m_{11,22}^2$ invariant.

 \rightarrow We can choose $\xi = 0$

indicating no spontaneous CP violation but wholly explicit CP violation.

• Neutral Higgs bosons

- The neutral states are defined by

$$G^{0} = \sqrt{2}(\operatorname{Im} \phi_{1}^{0} \cos \beta + \operatorname{Im} \phi_{2}^{0} \sin \beta),$$

$$A^{0} = \sqrt{2}(-\operatorname{Im} \phi_{1}^{0} \sin \beta + \operatorname{Im} \phi_{2}^{0} \cos \beta),$$

$$\varphi_{1} = \sqrt{2}\operatorname{Re} \phi_{1}^{0},$$

$$\varphi_{2} = \sqrt{2}\operatorname{Re} \phi_{2}^{0}.$$

- The mass matrix of neutral Higgs bosons

$$\mathcal{M}^2 = \begin{pmatrix} \mathcal{M}_{11}^2 & \mathcal{M}_{12}^2 & -\frac{1}{2}\mathrm{Im}(\lambda_5)\sin\beta \\ \mathcal{M}_{21}^2 & \mathcal{M}_{22}^2 & -\frac{1}{2}\mathrm{Im}(\lambda_5)\cos\beta \\ -\frac{1}{2}\mathrm{Im}(\lambda_5)\sin\beta & -\frac{1}{2}\mathrm{Im}(\lambda_5)\cos\beta & \mathcal{M}_{33}^2 \end{pmatrix} v^2$$

where

$$\mathcal{M}_{11}^2 = R \sin^2 \beta + \lambda_1 \cos^2 \beta,$$

$$\mathcal{M}_{22}^2 = R \cos^2 \beta + \lambda_2 \sin^2 \beta,$$

$$\mathcal{M}_{12}^2 = (\lambda_3 + \lambda_4 + \text{Re}\lambda_5 - R) \frac{\sin 2\beta}{2},$$

$$\mathcal{M}_{33}^2 = R - \text{Re}\lambda_5,$$

with

$$R = \frac{\text{Re}(m_{12}^2)}{v_1 v_2}$$

- Diagonalization of the mass matrix

$$\mathcal{M}_d^2 = \mathcal{R} \mathcal{M}^2 \mathcal{R}^\dagger,$$

$$\left(egin{array}{c} h_1 \ h_2 \ h_3 \end{array}
ight) = \mathcal{R} \left(egin{array}{c} arphi_1 \ arphi_2 \ A \end{array}
ight)$$

- Parametrizaton of the rotation matrix

$$\mathcal{R} = egin{pmatrix} 1 & 0 & 0 \ 0 & c_c & s_c \ 0 & -s_c & c_c \end{pmatrix} egin{pmatrix} c_b & 0 & s_b \ 0 & 1 & 0 \ -s_b & 0 & c_b \end{pmatrix} egin{pmatrix} -s_a & c_a & 0 \ c_a & s_a & 0 \ 0 & 0 & 1 \end{pmatrix} \ = egin{pmatrix} -c_b s_a & c_a c_b & s_b \ c_a c_c + s_a s_b s_c & s_a c_c - c_a s_b s_c & c_b s_c \ -c_a s_c + s_a s_b c_c & -s_a s_c - c_a s_b c_c & c_b c_c \end{pmatrix},$$

where $s_{a,b,c} = \sin \theta_{a,b,c}$ and $c_{a,b,c} = \cos \theta_{a,b,c}$.

- The CP-odd state A is mixed with CP-even states φ_1, φ_2
 - \rightarrow manifest CP violation in the neutral Higgs sector.

- Neutral Higgs Boson Production $e^+e^- \to Zh_i$ and $e^+e^- \to h_ih_j$
 - Generalized $h_i ZZ$ vertices

$$h_1 ZZ \sim \sin(\beta - \alpha) \cos \alpha_b,$$

 $h_2 ZZ \sim \cos(\beta - \alpha) \cos \alpha_c - \sin(\beta - \alpha) \sin \alpha_b \sin \alpha_c,$
 $h_3 ZZ \sim -\cos(\beta - \alpha) \sin \alpha_c - \sin(\beta - \alpha) \sin \alpha_b \cos \alpha_c.$

- The cross sections for $e^+e^- \rightarrow h_i Z$ processes

$$\sigma(e^+e^- \to h_i Z) = \frac{f_i^2 \pi \alpha^2 \lambda^{1/2} (\lambda + 12sm_Z^2) \left[1 + (1 - 4\sin^2 \theta_W)^2 \right]}{192s^2 \sin^4 \theta_W \cos^4 \theta_W (s - m_Z^2)^2}$$

where where f_i are the $h_i ZZ$ coupling given above

$$\lambda = \lambda(s, m_h^2, m_Z^2)$$

with

$$\lambda(a, b, c) = (a + b - c)^2 - 4ab$$

- CP violating coupling

$$\mathcal{L} = \frac{gm_Z}{2\cos\theta_W} \frac{\eta}{4} \epsilon_{\mu\nu\alpha\beta} Z^{\mu\nu} Z^{\alpha\beta}$$

induces the CP violation in this process.

 \rightarrow suppressed by loop

- Generalized Zh_ih_j vertices

$$Zh_1h_3 \sim \cos(\beta - \alpha)\cos\alpha_c - \sin(\beta - \alpha)\sin\alpha_b\sin\alpha_c,$$

 $Zh_2h_3 \sim -\sin(\beta - \alpha)\cos\alpha_b,$
 $Zh_1h_2 \sim \cos(\beta - \alpha)\sin\alpha_c + \sin(\beta - \alpha)\sin\alpha_b\cos\alpha_c.$

– The cross sections for $e^+e^- o h_i h_j$ processes

$$\sigma(e^{+}e^{-} \to h_{i}h_{j}) = \frac{g^{4}}{196\pi \cos^{2}\theta_{W}} f_{ij}^{2} \left(\frac{8\sin^{4}\theta_{W} - 4\sin^{2}\theta_{W} + 1}{\cos^{2}\theta_{W}} \right) \times \frac{\kappa^{3}}{\sqrt{s} \left[(s - m_{Z}^{2})^{2} + \Gamma_{Z}^{2} m_{Z}^{2} \right]}$$

where f_{ij} are the $h_i h_j Z$ coupling given above and the kinematic factor

$$\kappa^2 = \frac{\lambda(s, m_{h_i}^2, m_{h_j}^2)}{4s}$$

- Numerical constraints

: ordering,
$$m_1 < m_2 < m_3$$
,
: perturbativity, $\frac{\lambda}{4\pi} < 1$

• Discussion on a few limiting cases

- If
$$\theta_b = \theta_c = 0$$
:

- \rightarrow CP conserving case
- $\rightarrow h_1, h_2 \sim$ CP-even, $h_3 \sim$ CP-odd

$$\sigma(e^+e^- \to Zh_3), \ \sigma(e^+e^- \to h_1h_2) \ {f are \ suppressed.}$$

- If
$$\sin \theta_b \sim \sin \theta_c \sim 1$$
:
 $\rightarrow h_1 \sim \mathbf{CP\text{-}odd}, \ h_2, h_3 \sim \mathbf{CP\text{-}even}$

- If
$$\sin \theta_b \sim 0$$
, $\sin \theta_c \sim 1$:
 $\rightarrow h_2 \sim \mathbf{CP\text{-}odd}$, $h_1, h_3 \sim \mathbf{CP\text{-}even}$

– If $\sin \theta_c \sim 0$:

$$\mathcal{M}_{13}^2 = s_a c_b s_b (m_3^2 - m_1^2),$$

 $\mathcal{M}_{23}^2 = -c_a c_b s_b (m_3^2 - m_1^2).$

$$\rightarrow \tan \beta \approx -\tan \theta_a,$$

 $\beta \approx -\theta.$

Im
$$\lambda_5 = \sin 2\theta_b \frac{m_3^2 - m_1^2}{v^2}$$
.

- Additionally
$$\sin \theta_b \sim 1$$
:
 $\rightarrow h_1 \sim \text{CP-odd}, \ h_2, h_3 \sim \text{CP-even}$

but

$$h_2 ZZ \sim \cos(\beta - \alpha),$$

 $h_3 ZZ \sim -\sin(\beta - \alpha),$
 $h_1 h_3 Z \sim \cos(\beta - \alpha),$
 $h_1 h_2 Z \sim \sin(\beta - \alpha),$

 h_2 , h_3 couplings are exchanged!

$$\frac{g_{h_2ZZ}}{g_{h_3ZZ}} = \frac{1}{\tan(\beta - \alpha)}$$

while

$$\frac{g_{hZZ}}{g_{HZZ}} = \tan(\beta - \alpha)$$

in the CP conserving case.

Summary

- The 2 Higgs doublet model with CP violation may enhance the $e^-e^+ \to Zh$ and $e^-e^+ \to h_ih_j$ cross sections compared with those of CP conserving case.
- In the limit of $\sin \theta_c \to 0$ and $\sin \theta_b \to 1$, the ratio of hZZ and HZZ couplings are reversed to that of the CP conserving case and the mixing angle $\alpha(=\theta_a)$ is close to $-\beta$.
- The neutral Higgs boson production has very sensitive behavior near the CP conserving case.
- The 2 Higgs doublet model with CP violation will be able to be tested at the LC through neutral Higgs boson production.