Beamprofile Monitor R&D based on 3D Sensor

Collaboration of Brunnel, Hawaii, KEK, Stanford, Tohoku

Presented by: Hitoshi Yamamoto (Tohoku University)

LCWS Paris, April 20, 2004.

Outer radius $\sim 8 \, \text{cm}$. One on each side of IP. Trapisoidal sensors desirable.

Fabrication of 3D pixel sensor

- 1. Fabricated by S. Parker et. al., at CIS, Stanford).
- 2. Trapezoidal shape possible for disk or cone. (180 μ m thick, 200 μ m readout pitch, 3mm long)
- 3. Fabrication completed and being tested at LBL and Tohoku.

X-Ray Test (rectangular version)

Goal: establish dead region at electrodes and edges

- 180 μ m thick, 200 μ m readout pitch
- Connected as strips for testing
- ALS (Advanced Light Source) at LBL
- 12 keV synchrotron X-rays (penetrates Aluminum metal layers)
- \bullet Focused to ${\sim}2\mu{\rm m}$ spot size by elipsoisal X-ray mirrors
- Meausre the currents out of strips directly

Strip currents on 1st and 2nd strips

Dead region near edge $2\pm 2\mu\mathrm{m}$

Dead region near electrodes

Current on any strip vs X-ray position (unit: 2μ m)

Pixel Readout Chip Prototype.

- 1. Cuicuit design by KEK and Tohoku.
- 2. SPICE Simulation study by Tohoku.
- 3. VLSI layout by a company in Hiroshima.
- 4. Submitted to VDEC (Rohm $0.35\mu m$).
- 5. Delivered on Jan 20, 2003.
- 6. Tested at Tohoku.
- 7. Modifications in design ready for submission.

Readout electronics

Block diagram of the circuit

- 32ch per chip (prototype)
- Preamp → RC filter
 - → Voltage amp. shaper
 - \rightarrow Sample and Hold
- 4 samplings → time and pulseheight
- Serial output of 4 vals/ch. as a step function.
- All functions verified.

Timing measurement by 4 sample-and-holds 500 ns apart

Fit the parametrized function \rightarrow time and pulse height.

Reconstruction of the hit time

$$egin{aligned} v_1 &= A \left(1 - \exp(-rac{t_1 - t_0}{ au})
ight) e^{-rac{t_1 - t_0}{T}} \ v_2 &= A \left(1 - \exp(-rac{t_2 - t_0}{ au})
ight) e^{-rac{t_1 - t_0}{T}} \end{aligned}$$

au=RC: time constant of the rise time. T: time constant of the decay time.

$$t_0 = au \log rac{v_2 - v_1}{v_2 \exp(-rac{t_1}{ au}) - v_1 \exp(-rac{t_2}{ au})}$$

Then the pulseheight A can also be reconstructed.

$$A = rac{v_1}{\left(1 - \exp(-rac{t_1 - t_0}{ au})
ight)e^{-rac{t_1 - t_0}{T}}}$$

Serial readout output

Large offests for each channel observed. Some channels saturated.

Time reconstruction (test pulse injection)

+:
$$\tau = 0.3 \mu \text{s}$$
, +: $\tau = 0.5 \mu \text{s}$, +: $\tau = 0.8 \mu \text{s}$

Pulse height reconstruction (test pulse injection)

+: $\tau=0.3\mu \text{s}$, +: $\tau=0.5\mu \text{s}$, +: $\tau=0.8\mu \text{s}$ Find the effective τ that works.

Time resolution

Radiation test (Co60) (2 MRad/yr expected close to the beam.)

Withstands up to (at least) 1.8 MRad

Modification of the ciriut

Preamp

Removes uncertainly of time constant. Possibly better time (and pulse height) resolution.

Output amp

Hope to reduce the channel-dependent offset.

→ Submitting to VDEC

Next Steps

- 1. Fabrication of the modfified cuitcuit.
- 2. Tests of the modified chips.
- 3. Shrink the size.
- 4. Noise tolerance.