Instrumentation of the very Forward Region of a Linear Collider Detector

> Wolfgang Lohmann DESY (Zeuthen)

Report from the FCAL workshop in Prague (April 16)
Some results from SLAC (N. Graf and T Maruyama)

Functions of the very Forward Detectors

- Measurement of the Luminosity (LumiCal)
- •Fast Beam Diagnostics (BeamCal)
- •Shielding of the inner Detector

 Detection of Electrons and Photons at very low angle – extend hermiticity

 $L^{*} = 3m$

•Measurement of the Luminosity

•Measurement of the Luminosity

Laser Alignment System

Jagiellonian Univ. Cracow • Photonics Group

• Simple CCD camera,

- He-Ne red laser,
- Laser translated in 50 mm steps

reconstruction of the laser spot (x,y) position on CCD camera

Energy and Angular resolution

Simulation: Bhwide(Bhabha)+CIRCE(Beamstrahlung)+beamspred

Events selection: acceptance, energy balance, azimuthal and angular symmetry.

Stripped LumiCal

Some systematics in Θ Reconstruction !

Ց−Ց_{ու}

•Fast Beam Diagnostics (BeamCal)

Technologies:

- e⁺e⁻ pairs from beamstrahlung are deflected into the LCAL
- 15000 e⁺e⁻ per BX → 10 20 TeV
- 10 MGy per year Rad. hard sensors

Diamond-W Sandwich

Scintillator crystals

Gas ionisation chamber

Schematic views

Heavy crystals

W-Diamond sandwich

•Fast Beam Diagnostics (BeamCal)

Observables

\$\$ first radial moment \$\$ first moment in 1/r \$\$ thrust value \$\$ total energy \$\$ angular spread \$\$ E(ring ≥ 4) / E_{tot} \$\$ (A + D) - (B + C) \$\$ (A + B) - (C + D) \$\$ E / N

forward / backward calorimeter

detector: realistic segmentation, ideal resolution single parameter analysis, bunch by bunch resolution

•Fast Beam Diagnostics (BeamCal)

detector: realistic segmentation, ideal resolution single parameter analysis, bunch by bunch resolution

	nominal	uncertainty.	Beam Diag.
Bunch width x Ave.	553 nm	1.5	~ 10 %
Diff.		2.1	~ 10 %
Bunch width y Ave.	5.0 nm	0.2	Shintake
Diff.		0.5	Monitor
Bunch length z Ave.	300 µm	4.3	~ 10 %
Diff.		2.7	~ 10 %
Emittance in x Ave. Diff.	10.0 mm mrad	0.7	? ?
Emittance in y Ave.	0.03 mm mrad	0.001	?
Diff.		0.002	?
Beam offset in x	0	6	5 nm
Beam offset in y	0	0.4	0.1 nm
Horizontal waist shift Vertical waist shift	0 μm 360 μm	24	None

Multi Parameter Analysis

First Look at Photons

 $\sigma_x \sigma_{\overline{y}} = 6530 \text{ mm}$

nominal setting (550 nm x 5 nm)

Detection of Electrons and Photons Efficiency to identify energetic **Realistic beam simulation** electrons and photons (E > 200 GeV)√s = 500 GeV mean energy in particular cell (high BG near BP) 1000 Emean, GeV 900 800 Efficiency 700 600 Efficiency, % 120 500 400 100 real beams 300 80 200 ideal beams 60 100 0₀ 40 100 500 Includes seismic -edeal; 1-500 BX 20 eal; 201-500 EX real; \$1-200 BX motions, Delay of n 9 10 2 з 5 8 n 6 **Beam Feedback** energy RMS in p Radial Layer System, Lumi 400 Fake Rate Erms, GeV Optimisation etc. 350 ₽ Fake rate % 1S 1.4 **300 □** Fake Rate, deal beams 1.2 250 1 200 0.8 **150** ∃ 0.6 100 0.4 50 - eal; 1-500 BX 0.2 0₀ Areal: 51-200 BX 100 200 300 400 500 0 2 з 6 7 8 9 5 10 4 n bunch # **Radial Layer**

High Energy Electron Detection in NLC LUMON N. Graf and T. Maruyama (SLAC)

LUMON

- · Beampipe radius: IN 1 cm, OUT 2 cm
- Detector:
 50 layers of 0.2 cm W + 0.03 cm Si Zeuthen R segmentation
- Generate 330 bunches of pair backgrounds.
- Pick 10 BX randomly and calculate average BG in each cell, <E>_{background}
- Pick one BX background and generate one high energy electron.
- E_{BG} + E_{electron} <E>_{background}, in each cell
- Apply electron finder.

High Energy Electron Detection

Electron finder

- Use first several layers as shield.
- Use towers past layer 10 as seeds for a fixed-cone algorithm to cluster cells.
 - physical size of shower doesn't change
 - simplifies geometry handling
 - single pass through the data
- Cuts on cluster width and longitudinal shower χ^2 .

Electron Detection Efficiency

Background Pileup

What happens if we do not have single bunch time resolution?

The detection efficiency does not degrade quickly, but the fake rake increases.

rate (all	cluster energies):
5%	-
20	
40	
47	
	rate (all 5% 20 40 47

Fakes are concentrated in hotspots, not uniform in phi. Expect rejection to improve with further study.

Sensor prototyping, Diamonds

FAP4/FAP_4_3_Final

Sensor prototyping, Diamonds

Charge Collection distance vs. dose

#2 - cut substrate; 200 um

Preamplifier Characteristics

Oscillograms of Tetrod-BJT Amplifier

Summary

- MC Simulations to optimise the Design of the forward calorimeters are progressing
- Different Detector Technologies for BeamCal are under study
- BeamCal has a great potential for fast beam diagnostics
- Tests with Sensor Prototypes and preamplifier have been started
- After about one year we will present a Design
- The goal is to start after with the construction and test of a prototype

Charge collection distance measurements

The sensors are not irradiated

Upper curve is ramping up HV, Lower ramping down.

Charge collection distance is saturated to 50 μm at ~300V

Sensor prototyping and lab tests

FAP4/FAP_4_3_Final

