GEM-TPC performance in a magnetic field

Paris LCWS 2004 April 21, 2004

Dean Karlen, P. Poffenberger, G. Rosenbaum

University of Victoria & TRIUMF

TPCs with MPGD readout

- MPGDs offer significant advantages for TPC readout
 - \square Reduced **E** × **B** \Rightarrow better r- ϕ resolution
 - \Box Faster signals \Rightarrow better z separation, resolution
 - \Box Narrower signals \Rightarrow better r- ϕ separation
 - □ Particularly well suited for a LC
- Narrow signals present a new challenge for large scale TPCs:
 - How to accurately determine the centroid of the narrow charge distribution with a reasonable number of channels

TPCs with GEM readout

GEMs offer a solution:

- Use gas diffusion between the GEMs to spread the charge over a larger region
 - Since the defocusing occurs during and after the gain stage, the track resolution is not sacrificed
 - For the best two-particle separation, defocus as little as required

Example: P5

Defocusing equations

If:

(a) the variance of the gain, $\sigma_{e}^{2} = 0$

(b) the uncertainty of the x coordinate for each electron, $\sigma_x = 0$

Then:

hen: the variance of \overline{x} at the pads is: $\sigma_{\overline{x}}^2 = \frac{1}{N} \left(\sigma_d^2 + \frac{\sigma_0^2}{g} \right)$

To achieve the "diffusion limit", the GEM term must be much smaller than the diffusion term. The GEM term increases for:

(a) $\sigma_{a} > 0$ - this deserves more attention

(b) $\sigma_x > 0$ - this increases by using large pads (next slide)

Sampling with large pads

• Consider two neighboring semi-infinite pads with boundary at x = 0.

- If events are distributed according to the pdf G(x), the expectation value for the fraction of events over pad 1 is $\langle F \rangle = \int_{0}^{\infty} G(x) dx$
- If G(x) is Gaussian, with mean μ , standard dev. σ , the estimate, $\hat{\mu}$, determined from the observed fraction, *F*, has variance:

$$\sigma_{\hat{\mu}}^2 = 2\pi\sigma^2 \ e^{(x-\mu)^2/\sigma^2} \sigma_F^2$$

From binomial statistics, the variance of F is $\sigma_F^2 = p(1-p)/N$

if
$$\mu = 0 \Rightarrow \sigma_{\hat{\mu}}^2 = \frac{1}{2}\pi\sigma^2 / N \cong 1.6 \sigma^2 / N$$
if $\mu = 1\sigma \Rightarrow \sigma_{\hat{\mu}}^2 \cong 2.3 \sigma^2 / N$ if $\mu = 2\sigma \Rightarrow \sigma_{\hat{\mu}}^2 \cong 9. \sigma^2 / N$ if $\mu = 2\sigma \Rightarrow \sigma_{\hat{\mu}}^2 \cong 9. \sigma^2 / N$ - the GEM term is to be small
- keep pad width < 4 σ
- noise/thresholds not incl.

Limited defocusing

It depends on the gain, and other factors, but as rough figure, the defocusing should be at least $\sigma_0 \approx \frac{1}{4} \text{ pad width}$

- Charge sharing typically over 2 pads:
 - Important to account for non-linear sharing
 - Track fitting is performed by maximum likelihood:

 $x_0, \phi_0, \sigma, r^{-1}$

Test of concept in a magnetic field

Small TPC prototype with GEM readout designed for cosmic ray tests in TRIUMF and DESY magnets:

First GEM-TPC tracking in B fields

■ TRIUMF tests (0 – 0.9 T): June 2003

D. Karlen / University of Victoria & TRIUMF

Example events at ~ 25 cm drift

DESY tests (0 – 5.3 T): July/August 2003

Example events at ~ 25 cm drift

Gas: P5

Pulse analysis

- Both induced and real pulses are seen.
 - electronics
 shaping responsible
 for the unipolar (real)
 and bipolar (induced)
 shapes for these
 pulses

Real/Induced signal separation

- To measure the distribution of electrons directly, we need to remove the induced component:
 - Look at events from high field (low diffusion) where track goes through centre of pad:
 - Sum amplitude over the
 7 bins shown (peak +/ 3 bins) induced
 component is nullified
 - weighting of pre/post peaking adjusted – found that weight=1is optimal

Cluster finding

Data is scanned in each row for a cluster of signals in bins of space-time.

Electron transport measurements

The maximum likelihood track fit includes, as a parameter, the standard deviation of the charge clouds as they arrive on the pads, σ

Diffusion constants: check with MC

- Monte Carlo samples produced with diffusion constants from Garfield
 - analysis of samples yield diffusion constants somewhat smaller than input constants:
 - Table shown for P5 MC
 - To correct for analysis:
 add ~8 (except for B=0)

B (T)	Input (µm/√cm)	Output (μm/√cm)
0	721	671 ± 4
0.9	170	162 ± 1
1.5	112	105 ± 1
2.5	71.1	63.2 ± 0.8
3.5	51.7	42.7 ± 1.1
4.5	41.2	31.8 ± 1.5
5.3	34.3	24.8 ± 2.1

Diffusion constants: P5 and TDR gases

In reasonable agreement with Garfield

Defocussing: P5 and TDR gases

- Somewhat more defocusing seen in data
- Need more defocusing for best resolution with 2mm pads

D. Karlen / University of Victoria & TRIUMF

Diffusion and defocusing

- Some systematics were studied:
 - noise (added to MC)
 - gain non-uniformity (included in MC samples)
 - The diffusion and defocusing estimates are found to be relatively insensitive to these
- defocusing estimates are sensitive to the weightings of pre/post peak (induced signal removal)

Resolution studies

- Quoting the resolution from a single pad row is useful to compare different technologies and to estimate the performance of a large scale device
- To define resolution for a row: take the geometric means of the standard deviations of the residual distributions with and without including the row in the reference track fit
- From MC studies, this was found to correctly estimate the intrinsic resolution of a single row

Resolution in drift direction (P5 gas)

A simple time of arrival is used for each row: peak bin of the pad with the largest signal

Resolution in drift direction (TDR gas)

Somewhat better resolution in TDR gas

Resolution in transverse direction (P5 gas)

Compared to MC results

²⁴

Resolution in transverse direction (P5 gas)

• At high fields, the data resolution is worse than MC expectations

Single row systematics

Looking at only one row, resolution improves – bias is evident

Bias depends on magnetic field

• Look at bias, from straight track fits, vs x_0

D. Karlen / University of Victoria & TRIUMF

Track distortions

By comparing the mean residual vs x₀ for different rows, it appears that the track distortion is in the form of outward bowing:

need to account for non-uniform magnetic field?

Systematics – non-uniform gain

- Channel to channel gain calibrations are not performed. A study with cosmic tracks indicates the RMS of gains is less than 5%
- MC samples with non-uniform gain suggests that the effect of a 5% gain variation on resolution is small

Other systematics – noise

- The data has noise with RMS of about 3000 e
- A MC analysis with noise added indicates that the effect of 3000 e RMS noise on the resolution is small:

D. Karlen / University of Victoria & TRIUMF

Resolution in transverse direction (TDR gas)

Similar conclusions as with P5 gas (poorer overall)

Plans for future work

- Finalize analysis of DESY/TRIUMF data
- Prepare TPC for laser studies at DESY:
 - track distortions
 - 2 track resolution
 - □ ion feedback
- Interested in trying out micromegas in our TPC
 second readout endplate under construction

Conclusions

Defocusing by GEMs is sufficient to allow good resolution with relatively large rectangular pads

 \square reached 100 μm with 2 x 7 mm² pads

- to improve on this: need more defocusing, treatment of nonuniform field?
- Acknowledgements
 - Support staff at Carleton University and University of Victoria – TPC construction
 - LBNL STAR electronics
 - □ TRIUMF laboratory 1 T magnet setup
 - DESY group 5 T magnet setup and operational support (P. Wienemann, F. Sefkow, T. Lux, …)