Physics Motivation for polarised e^- and e^+ Beams

Gudrid Moortgat-Pick (IPPP Durham)

Polarisation Session Paris, 'LCWS 2004 ' 20/04/2004

- Introduction: general remarks about coupling structures
- Beam polarisation for
 - \rightarrow search of new physics
 - \rightarrow discriminating the models
 - \rightarrow revealing the structure of the model
 - \rightarrow precision test of the Standard Model
- Further examples in Working group report:

'Polarisation Write-Up' (http://www.ippp.dur.ac.uk/~gudrid/power/)

Introduction

Goal of the Linear Collider

'Precision and discovery physics in the energy range up to O(1 TeV)'

Being prepared for the 'Unexpected'!

- \Rightarrow polarisation of e^- and e^+ beams is an important tool:
- a) analysing the structure of the underlying (new) physics
 - \rightarrow proof of the predicted properties
 - \rightarrow determination of parameters
 - \rightarrow distinguishing new physics models
- b) discovery tool for new physics searches: 'S/B'
 - \rightarrow also stat. arguments: P_{eff} , \mathcal{L}_{eff}
- c) precision arguments: e.g. GigaZ

There are $n \rightarrow (n + 1)$ reasons for $P(e^-)$ and $P(e^-)$: only a few today (and also *Omori*, '99, *GMP*, *Steiner* '00, *GMP* '03, see also the 'Write-Up' ...)

Overview

History: First polarised e^- beam at a LC: 3-km SLC at SLAC $\rightarrow P(e^-) = [60\%, 78\%]$

Planned design for a future LC:

• polarised electron source: similar design as for SLC! \rightarrow strained photocathode technology

 $\Rightarrow P(e^{-}) \approx 90\%$ expected \rightarrow Talk by M. Yamamoto

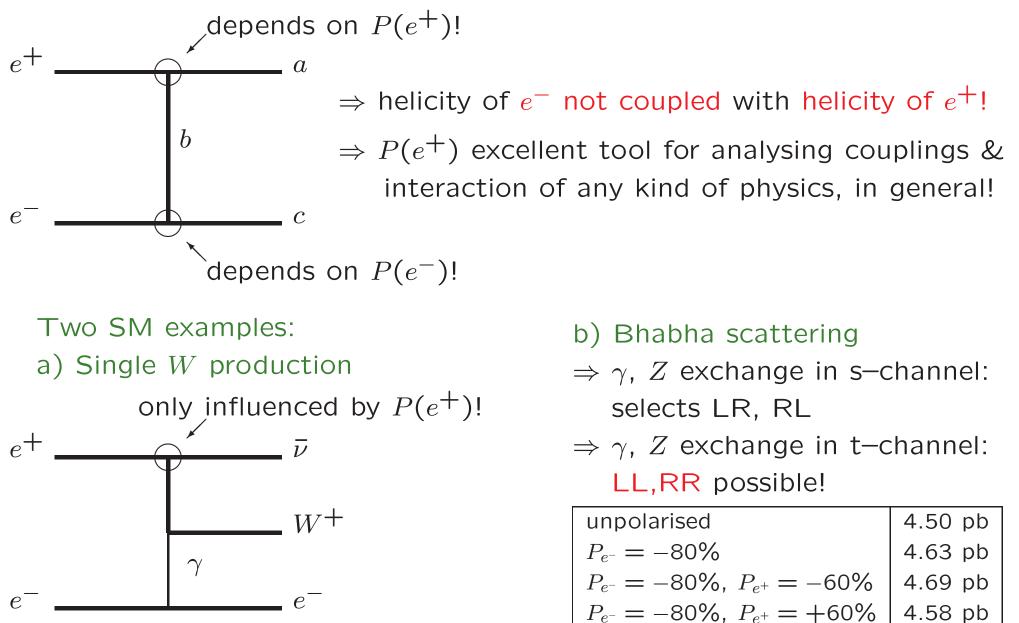
- polarised positrons at a LC: complete novelty!
 - \rightarrow laser Compton based source \rightarrow Talk by T. Omori
 - \rightarrow helical undulator based source \rightarrow Talk by T. Schweizer
 - \rightarrow polarised $\gamma \rightarrow$ photoproduction of polarised e^+ :
 - $\Rightarrow P(e^+) \ge 60\%$ expected
- Measurement of polarisation: (Talks tomorrow) Compton polarimetry: $\Delta P(e^{\pm}) \leq 0.5\% \rightarrow Talks$ by P. Schüler, M. Woods 'Physics measurements for Polarimetry': high precision polarimetry,

Blondel Scheme

 \rightarrow Talk by K. Moenig

General remarks about the coupling structure

Def.: left-handed $\equiv P(e^{\pm}) < 0$ right-handed $\equiv P(e^{\pm}) > 0$


Which configurations are possible in principle? s-channel:

$$e^+$$

 $J=1$
 $J=0$
 \leftarrow only from RL,LR: SM (γ , Z) and NP(?)
 \leftarrow only from LL,RR: NP!

 \Rightarrow In principle: $P(e^{-})$ fixes also helicity of e^{+} !

Which configurations are possible in the crossed channels?

t-channel:

Task of the LC: Revealing the structure of the new physics

⇒ Example for NP: Minimal Supersymmetric Standard Model

Why Susy as an example for New Physics?

ightarrow strongly motivated ... worked out very well ... (and only 15 minutes time

Questions:

- How to test in experiment the Susy properties?
 E.g. spin, quantum numbers, Yukawa couplings of Susy particles
- Since Susy is broken: at least 105 parameters (in MSSM)
 ⇒ How to derive the fundamental parameters without assuming a specific Susy breaking scheme?
- Which accuracy, theoretically and experimentally, is possible? $\rightarrow O(\%)$ level possible, even if only light Susy particles accessible

 \Rightarrow Beam polarisation of both beams is decisive!

Example for NP: Minimal Supersymmetric Standard Model

SM particle + its superpartner: supermultiplets

$$\text{`Vector':} \begin{pmatrix} \text{Spin1} \\ \text{Spin}\frac{1}{2} \end{pmatrix} = \begin{pmatrix} q_{\mu}^{a=1,\dots,8} \\ \tilde{g}_{\mu}^{a=1,\dots,8} \end{pmatrix}, \begin{pmatrix} W_{\mu}^{i=1,2,3} \\ \tilde{W}^{i=1,2,3} \end{pmatrix}, \begin{pmatrix} B_{\mu} \\ \tilde{B} \end{pmatrix}$$
$$\text{`Chiral':} \begin{pmatrix} \text{Spin}\frac{1}{2} \\ \text{Spin0} \end{pmatrix} = \begin{pmatrix} q_{L,R} \\ \tilde{q}_{L,R} \end{pmatrix}, \begin{pmatrix} \ell_{L,R} \\ \tilde{\ell}_{L,R} \end{pmatrix}, \begin{pmatrix} \nu_{\ell} \\ \tilde{\nu}_{\ell} \end{pmatrix}$$

⇒ all Susy particles have to carry same quantum numbers as SM partner (except the spin)..... 'chiral' scalars?

 \Rightarrow experimental proof needed!

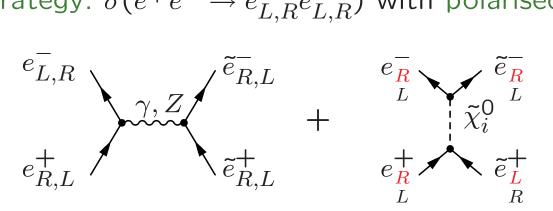
Enlarged Higgs sector – Two doublets H_1 , H_2 :

'Higgs':
$$\binom{\text{Spin0}}{\text{Spin}\frac{1}{2}} = \binom{H_1}{\tilde{H}_1}, \binom{H_2}{\tilde{H}_2}$$

 \Rightarrow Physical states: h^0 , H^0 , A^0 , H^{\pm}

Polarised beams e.g. for proving Susy quantum numbers

Test of the SUSY assumption:


SM \leftrightarrow SUSY have same quantum numbers!

 $\Rightarrow e_{L,R}^{-} \leftrightarrow \tilde{e}_{L,R}^{-} \quad \text{and} \quad e_{L,R}^{+} \leftrightarrow \tilde{e}_{R,L}^{+}$

Scalar partners ↔ chiral quantum numbers!

How to test this association?

Strategy: $\sigma(e^+e^- \rightarrow \tilde{e}^+_{L,R}\tilde{e}^-_{L,R})$ with polarised beams

 \Rightarrow t-channel: unique relation between chiral fermion \longleftrightarrow scalar partner

Use e.g.
$$e_R^+ e_R^-$$

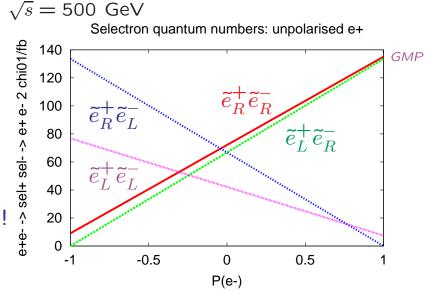
 \rightarrow no s-channel $\tilde{e}_L^+ \tilde{e}_R^- \longrightarrow \tilde{e}_L^+ \leftrightarrow \tilde{e}_R^-$

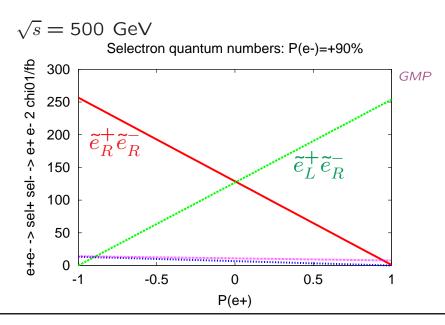
Physics Case for $P(e^+)$: Tests of Susy quantum numbers

• precise analysis of non-standard couplings

Polarised cross sections: $\sigma(e^+e^- \rightarrow \tilde{e}^+_{L,R}\tilde{e}^-_{L,R})$

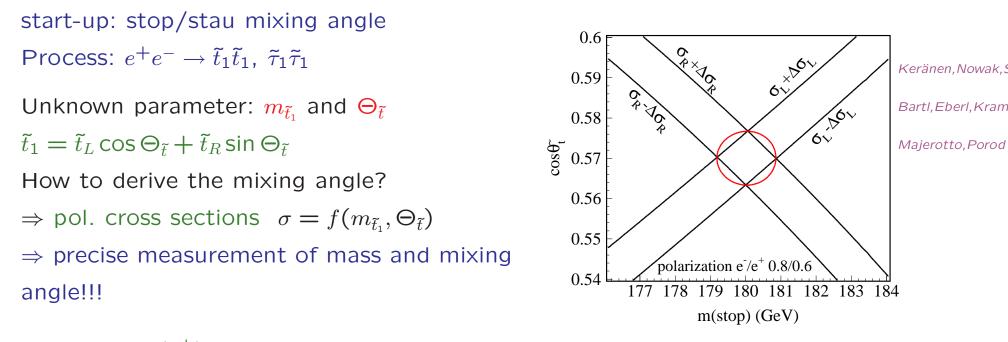
Tricky case: $m_{\tilde{e}_L} m_{\tilde{e}_R}$ close together: $m_{\tilde{e}_L} = 200 \text{ GeV}, m_{\tilde{e}_R} = 195 \text{ GeV}$ \rightarrow same decay kinematics!


 \Rightarrow No separation of $\tilde{e}_R^+ \tilde{e}_R^-$, $\tilde{e}_L^+ \tilde{e}_R^-$ even for high $P(e^-)!$


• could additional $P(e^+)$ help?

 $P(e^-) = +90\%$, $P(e^+) = +60\%$: excellent separation of $\tilde{e}_R^+ \tilde{e}_R^-$, $\tilde{e}_L^+ \tilde{e}_R^-$!

⇒ Test of association of chiral quantum numbers to \tilde{e} !


 $\Rightarrow P(e^+)$ absolutely needed!

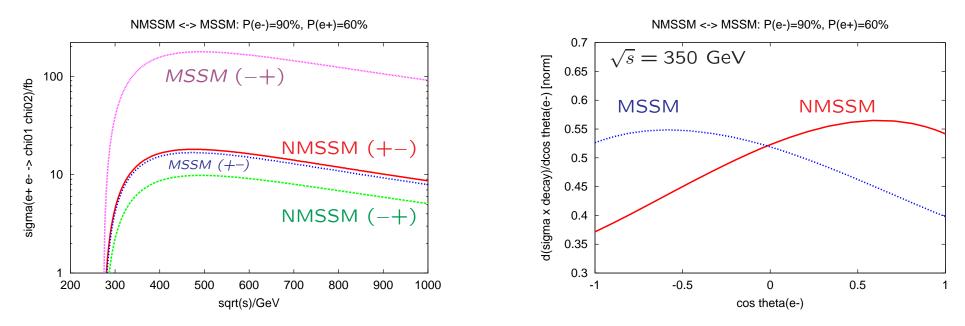
G. Moortgat-Pick

Determination of Susy parameters ... challenging task, ... large amount of parameters

Impact of $P(e^+)$? \rightarrow study error reduction by 20% \rightarrow may be important for resolving ambiguitites

Other Susy sectors, e.g. gauginos/higgsinos: a bit more complicated \rightarrow beam polarisation needed for determining parameters, testing Yukawa couplings, etc..

Impact of $P(e^+)$?


- \rightarrow error reduction
- ightarrow providing more observables, maybe crucial for statistics, resolving ambiguities, \ldots

Separation between different Susy models: NMSSM

 \Rightarrow additional Higgs singlet leads to extended neutralino sector

Process: $e^+e^- \rightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_2$ similar masses in both models: $m_{\tilde{\chi}^0_1} = 96$ GeV, $m_{\tilde{\chi}^0_2} = 176$ GeV

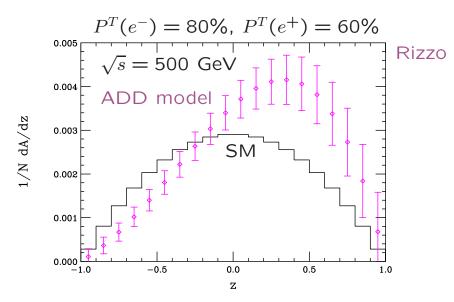
Strategy: polarised cross sections and angular distributions (incl. full spin correlations Hesselbach, Franke, Fraas, GMP'99,'04, Hesselbach, Franke, Fraas'00, '01,'

 \Rightarrow similar mass spectra, but different polarisation dependence ! \Rightarrow beam polarisation crucial for discovery (statistics!) and separation Other example of New Physics: Large extra dimensions

• Separation with transversely polarised beams!

Rates are given by:

 $\sigma = (1 - P_{e^+} P_{e^-}) \sigma_{unp} + (P_{e^-}^L - P_{e^+}^L) \sigma_{pol}^L + P_{e^-}^T P_{e^+}^T \sigma_{pol}^T$


 \Rightarrow only possible with both beam polarised!

Example here: $e^+e^- \rightarrow f\bar{f}$

Observable: azimuthal asymmetry exact symmetric in the SM!

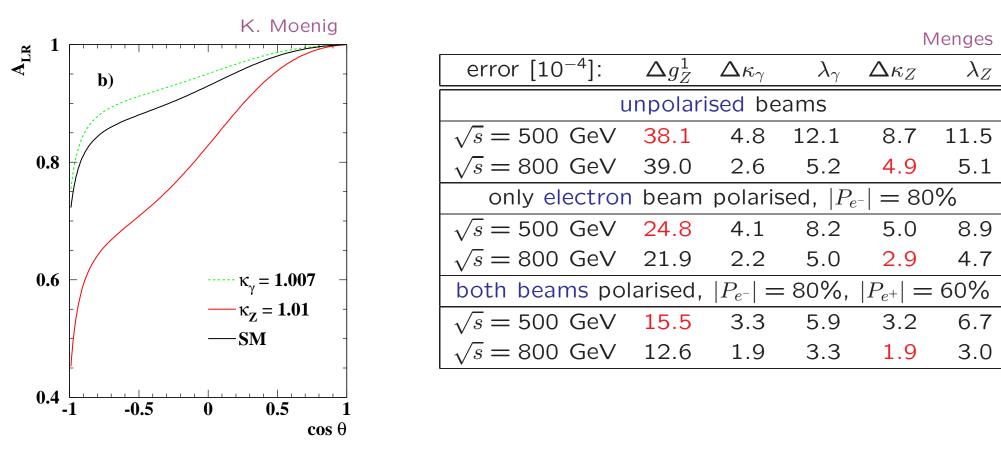
However: if e.g. large extra dimensions

- \rightarrow Graviton Spin=2 ('tensor') exchange
- → asymmetric behaviour!!!!
- \Rightarrow clear separation of different models of NP

\Rightarrow Polarised e^+ in addition to polarised e^- needed at a LC

Further examples: Tranverse beams and their impact on ...

- CP violation search in incl. processes: $e^+e^- \rightarrow A + X$ Ananthanarayan, Rindani '03
 - \rightarrow only S- or T- currents lead to CP-odd observables (in s channel) focused out by (only!) transverse polarisation in int. terms
 - \rightarrow no final state analysis necessary


example: $e^+e^- \rightarrow t\bar{t}$ sensitive to scale $\Lambda \sim 10$ TeV at $\sqrt{s} = 500$ GeV

- CP violation search in $e^+e^- \rightarrow Z\gamma$ Ananthanarayan, Rindani, Singh, Bartl'04 trans. pol. (only!) focusses out real part of CP-viol. vertex
- \rightarrow Talk by S. Rindani in EW session
- Further News: high Precision Tests of the SM
- → transverse polarisation in WW prod. Fleischer, Kolodziej, Jegerlehner'94 simulation study for TGC: no gain compared to long pol. F. Franco-Sollova'04, however sensitiv to one specifig TGC only with trans. pol. via optimal observable method Diehl, Nachtmann, Nagel'03

Longitudinal Beam Polarisation for high precision tests of the SM

I. Process:
$$e^+e^- \rightarrow W^+W^-$$
 at high \sqrt{s}

Test of anomalous gauge couplings: $\mathcal{L} \sim g_V^1 W_{\mu\nu}^* W_{\mu} A_{\nu}, \kappa_V W_{\mu}^* W_{\nu} F_{\mu\nu}, \lambda_V W_{\rho\mu}^* W_{\mu\nu} F_{\nu\rho}$

⇒ beam polarisation needed for disentangling of the couplings ⇒ P_{e^-} , [+ P_{e^+}] improves sensitivity up to a factor 1.8 [2.5] and can save running time!

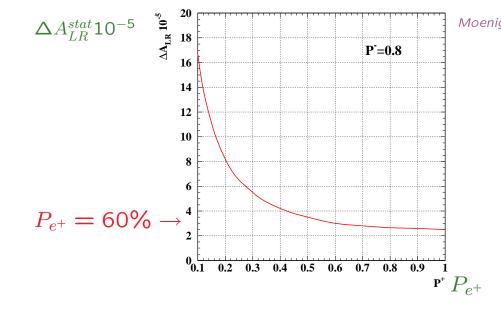
High precision tests of the SM, cont.

II. Process: $e^+e^- \rightarrow Z \rightarrow f\bar{f}$ at the Z-pole (s-channel)

Measurement of effective mixing angle sin Θ_{eff}^{ℓ} via A_{LR} :

$$\sigma = \sigma_u [1 - P_{e^-} P_{e^+} + A_{LR} (P_{e^+} - P_{e^-})], \qquad A_{LR} = \frac{2(1 - 4\sin^2 \Theta_{eff}^{\ell})}{1 + (1 - 4\sin^2 \Theta_{eff}^{\ell})^2}$$

Gain in statistical power of 'Z-factory' only if $\Delta A_{LR}(pol) < \Delta A_{LR}(stat)!$


 $\Rightarrow \Delta P_{eff} \sim 10^{-4}$ needed! ... not possible with only polarimetry....

• Alternative Blondel Scheme:

$$A_{LR} = \sqrt{\frac{(\sigma^{RR} + \sigma^{RL} - \sigma^{LR} - \sigma^{LL})(-\sigma^{RR} + \sigma^{RL} - \sigma^{LR} + \sigma^{LL})}{(\sigma^{RR} + \sigma^{RL} + \sigma^{LR} + \sigma^{LL})(-\sigma^{RR} + \sigma^{RL} + \sigma^{LR} - \sigma^{LL})}}$$

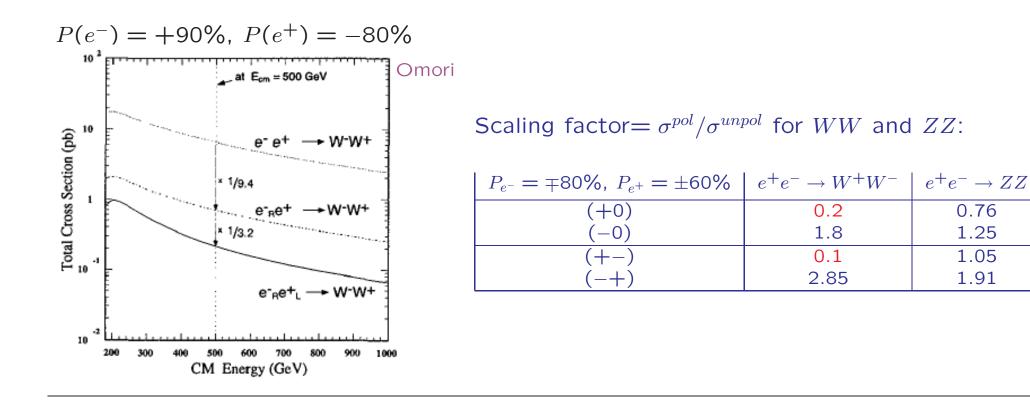
 $\Rightarrow \Delta A_{LR} \sim 10^{-4}$, $\Delta \sin^2 \theta_{eff}^{\ell} = 0.000013!!!$

	$\Delta A_{LR}(80\%,0)/\Delta A_{LR}(80\%,60\%)$		
Test:	Two polarimeter	Blondel	Alt. Blondel
	3.73	13.5	25

Alexander

$$\Rightarrow P(e^+)$$
 needed!

G. Moortgat-Pick


Last but not least:

Suppression of 'background' processes, e.g. WW production

WW, ZZ production = large background for NP searches!

 W^- couples only left-handed:

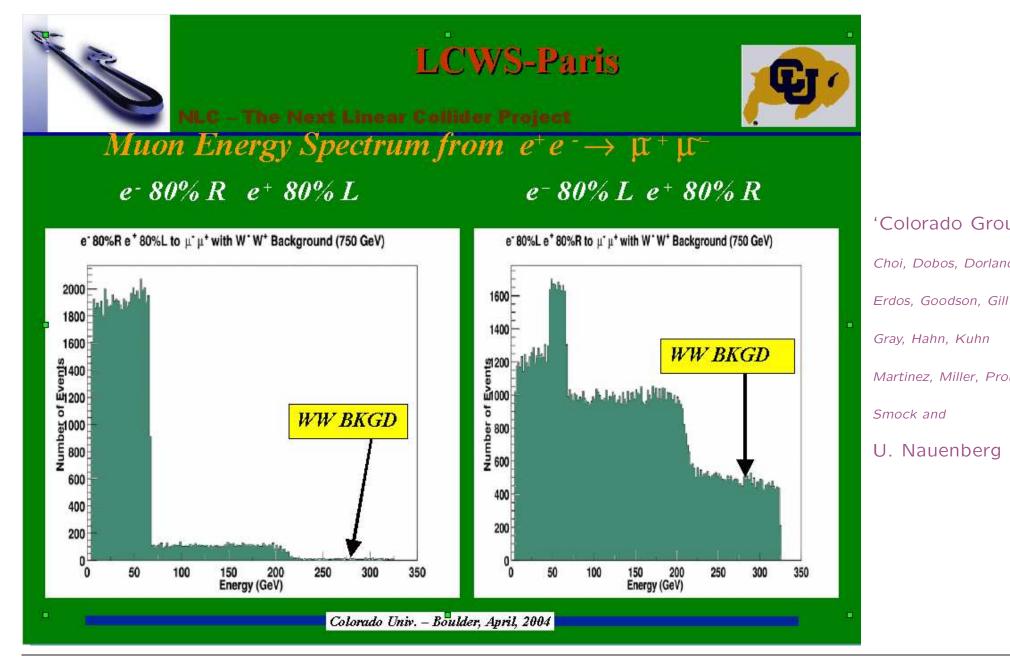
 \Rightarrow WW background strongly suppressed with right polarised beams!

0.76

1.25

1.05

1.91


0.2

1.8

0.1

2.85

Suppression of 'background' processes for Susy searches, e.g. $\tilde{\mu}\tilde{\mu}$

Beam polarisation of both beams: powerful tool at a future LC for being prepared for the 'Unexpected'

- Discovery and 'unveiling' of SUSY
 - \rightarrow test of SUSY assumptions
 - \rightarrow derive fundamental MSSM parameters without scheme assumption
- Discovery of other kinds of New Physics and Separation between different Susy models
- Use of transversely polarised beams

 → high potential in search for CP violating sources
 → sensitive to e.g. Spin=2 exchange (graviton) in ED
- Electroweak precision tests with unprecedented accuracy!
 - \rightarrow anomalous gauge couplings
 - \rightarrow option of using 'Blondel scheme' for measuring polarisation
- 'Polarisation Write-Up' under work, provides many more examples: will be finished for ECFA '04@Durham

Further news and information, please have a look:

POWER working group: close contact between Th/Exp/Machine

 $(\rightarrow http://www.ippp.dur.ac.uk/~gudrid/power)$