Beam Related Systematics in Higgs Mass Measurement

Alexei Raspereza

LC Workshop, Paris 20/4/2004

Higgs Mass Measurements (Previous Studies)

- Previous studies : W. Lohmann, P. Garcia-Abia, A. Raspereza LC-PHSM-2000-062
- Experimental conditions : $\sqrt{s} = 350 \text{ GeV}$, $L = 500 \text{ fb}^{-1}$
- Exploited channels :
 - HZ \rightarrow bbqq, bb*ll* @ m_H = 120 GeV HZ \rightarrow WWqq, WW*ll* @ m_H = 150, 180 GeV
 - $HZ \rightarrow Xll$ over entire mass range
- Considered backgrounds : WW, ZZ, qq, Wev, Zee, ZZZ^{*}, ZWW^{*}
- Simulation tools :

PYTHIA and WHIZARD → generation of signal and background
CIRCE → beamstrahlung modeling
SIMDET version 3 → fast parametric detector response simulation

Analysis Procedures

- Selection of specific final state (event shapes, Z mass information, *etc...*)
- b-tagging parametrization from R. Hawkings LC-PHSM-2000-021
- Lepton ID $(Z \rightarrow ll)$
- Kinematic fit significantly improves mass resolution
- Analysis of mass spectrum → Higgs mass determination

HZ→bbqq, L=500fb⁻¹, √s=350GeV

Four Fermion Channels m_µ = 120 GeV

HZ \rightarrow bbee, bbµµ HZ \rightarrow bbqq 4C fit (4P) : $\delta m_{H} = 70 \text{MeV}$ 5C fit (4P + m_{Z}) : $\delta m_{H} = 45 \text{MeV}$ <u>Combination</u> : $\delta m_{H} = 40 \text{MeV}$

Beam Related Systematics

Differential Luminosity Spectrum

- Beamstrahlung \rightarrow distortion of beam energy spectrum
- Parametrization :

 $f(x) = a_0 \delta(1-x) + a_1 x^{a^2} (1-x)^{a^3}, x = E_e E_{beam}$

- $f(x)dx = 1 \rightarrow 3$ independent parameters: a_0, a_2, a_3
- acollinearity spectrum in Bhabha events → differential luminosity spectrum measurement
- K.Moenig, LC-PHSM-2000-60 : $\delta_{a_i/a_i} \le 1\%$ with 3 fb⁻¹ @ $\sqrt{s} = 500$ GeV

 $\sqrt{s} = 350 \text{ GeV}$: $a_0 = 0.55, a_1 = 0.59, a_2 = 20.3, a_3 = -0.63$

Differential Luminosity Spectrum

 $\delta a_i \sim 10\%$: effect O(10MeV) on Higgs mass $\delta a_i \leq 1\%$: effect of O(MeV) on Higgs mass

Effect of Gamma Gamma Background

- Beamstrahlung photons may collide $-\gamma\gamma \rightarrow$ hadrons background
 - -pile-up with physical events
 - -excessive energy, excessive e-flow objects (predominantly in forward/backward region)
- TESLA : 0.25 ev/bx, 337 ns bunch separation @ 500 GeV →bunches can be disentangled
- NLC : 0.1 ev/bx, 1.4ns bunch separation $\widehat{}$ \rightarrow high time-stamp capability is required $\widehat{}$
- γγ background may have drastic effect on analysis performance (K. Desch will report more on this)

Summary

- Potential of future linear e⁺e⁻ collider for measuring Higgs boson mass is studied
- Statistical uncertainty of 50 MeV is reachable for SM Higgs boson with mass $m_{H} = 120 \text{ GeV} (\sqrt{s} = 350 \text{ GeV}, L = 500 \text{ fb}^{-1})$
- Beam related systematics studied :
 - systematics on beam energy measurement of $\delta E/E \le 10^{-4}$ is required to keep systematic error on Higgs boson mass below statistical one
 - insignificant effect from beamspread and uncertainty in differential luminosity spectrum measurement