Experimental Issues

Ray Frey
University of Oregon
ICLC Paris, April 19, 2004

- Physics imperatives
 - detector implications
- The LC environment & implications
 - interaction region
 - initial state(s)
 - accelerator technology
- Revisiting detector design issues
 - major parameters
 - Session Thursday
 - implications
 - technology choices: H. Yamamoto
- Issues for the workshop

Timeline for Experimentalists

Time	DoE Time	Tasks
T ->10~11	Before 2005	Detector R&D
T – 10~11	2005~6	Test Beam I
T – 8~9	2006~7	Detector Technology chosen.Detector Development and design begins
T – 6	2009	Detector Construction begins
Т	2015	LC and Detector ready

J. Yu, Jan 2004

- Transfer of physicist-days from physics studies to detector R&D
 - Essential, since we are pushing frontiers in several areas
- Good: Experimental issues being addressed in more detail
 - This talk
- Bad: Many physics studies need (much) more work

Physics Imperatives

#1 A light Higgs boson

- SM, from precision EW
- SUSY
- Measure its properties
 - Mass
 - Width
 - Spin
 - Branching fractions
 - Couplings to gauge bosons
 - Self-couplings
 - Top Yukawa coupling
- Go after additional family members
 - Ho, H[±] (2HDMs, etc)
 - CP violation (γγ collider)

#1 A light Higgs boson (contd)

The higgstrahlung process:

$$e^+e^- \rightarrow Zh$$

- Isolate Higgs sample independent of its decay modes
- Momentum resolution drives tracker design: ∆p/p² ≈ few x 10⁻⁵ GeV⁻¹

R. Frey

#1 A light Higgs boson (contd)

- Measure its properties
 - Mass
 - Width ✓
 - Spin ✓
 - Branching fractions ✓
 - Drives vertex det designs
 - Couplings to gauge bosons
 - Self-couplings
 - Top Yukawa coupling

cross section (fb)	15 - J=0 J=1 J=2	Coupl
	0	g_{HWW}
	210 220 230	_

√s (GeV)

TESLA TDR

Coupling	$M_H = 120 \mathrm{GeV}$	$140\mathrm{GeV}$		
g_{HWW}	± 0.012	± 0.020		
g_{HZZ}	± 0.012	± 0.013		
g_{Htt}	± 0.030	± 0.061		
g_{Hbb}	± 0.022	± 0.022		
g_{Hcc}	± 0.037	± 0.102		
$g_{H au au}$	± 0.033	± 0.048		
g_{HWW}/g_{HZZ}	± 0.017	± 0.024		
g_{Htt}/g_{HWW}	± 0.029	± 0.052		
g_{Hbb}/g_{HWW}	± 0.012	± 0.022		
$g_{H au au}/g_{HWW}$	± 0.033	± 0.041		
g_{Htt}/g_{Hbb}	± 0.026	± 0.057		
g_{Hcc}/g_{Hbb}	± 0.041	± 0.100		
$g_{H au au}/g_{Hbb}$	$\pm \ 0.027$	± 0.042		

Challenging! Important!

Few x 10% sensitivity ... in general need more experimental scrutiny

#2 Light SUSY?

- Shows off LC capabilities
- Good example of LHC/LC complementarity

particle	m [GeV]	$\delta \mathrm{m}$	ı [GeV]
		LHC	LHC+LC
h^0	109	0.2	0.05
A^0	259	3	1.5
χ_1^+	133	3	0.11
$ \begin{array}{c} \chi_1^+ \\ \chi_1^0 \\ \hline \tilde{\nu_e} \\ \tilde{e_1} \\ \tilde{\nu_\tau} \\ \tilde{\tau_1} \end{array} $	72.6	3	0.15
$\widetilde{ u_e}$	233	3	0.1
$\widetilde{e_1}$	217	3	0.15
$\widetilde{ u_{ au}}$	214	3	0.8
$ ilde{ au_1}$	154	3	0.7
$\widetilde{u_1}$	466	10	3
$\widetilde{t_1}$	377	10	3
\tilde{g}	470	10	10

TESLA TDR

Possible experimentalist solution to the hierarchy problem...

- TONOTA (theory of none-of-the-above)
- Open-mindedness reinforced by recent theoretical creativity...
- •MSM
- •MSSM
- Fat Higgs
- Little Higgs
- •SUSY t-color models
- •Higgs-less (extra dims.)
- Topcolor
- •TONOTA

H. Murayama

#2 Well... um... hmmm

My view (still): This is a facility of <u>exploration</u>, not specialization.

- Must be ready for anything many possibilities!
- However, we expect final states which include:
 - Multi-jet final states
 - · With or without beam constraint
 - Leptons
 - including tau
 - Heavy quarks
 - Missing energy/mass
 - Combinations of these

Be prepared to exploit the inherent power of LC

- Well-defined initial state
 - Energy, tunable
 - Momentum constraints
 - No gluons
 - Quantum numbers
 - Polarization: e⁻, e⁺, γ
 - Possibilities for γγ , γe- , e- e-
 - Tiny collision region

- Ability to tag heavy (light) quarks
- Excellent missing energy/mass sensitivity
- Ability to choose energy, polarization of collisions
 - Threshold scans, Giga-Z
 - Modulation of signals and backgrounds

A typical physics roadmap

Sensible programs can be formulated to cover all of the (foreseen) physics within a luminosity and energy budget. e.g. P. Grannis hep-ex/0211002 (LCWS2002)

"At the LC, the initial state is well defined"...

A Luminosity Spectrum dL/dE

- Contributions
 - 1. ISR
 - 2. Beamstrahlung
 - 3. Linac energy spread, $\Delta E/E \longrightarrow$

" $\delta(E_o)$ + tail"

Broadening near E_o

Measuring dL/dE

Mean beam-energy measurement

SLC extraction line spectrometer

Using detector final states

Bhabha acollinearity

$$\delta \propto (E_+ - E_-) \sin\theta / E$$

- Sum?
 - Several possibilities
 - Zγ, ZZ, WW?
 - Promising: radiative returns

$$e^+e^- \to \text{Z}\gamma \to \mu\mu\gamma$$

ICLC, Paris

R. Frey

energy constraints (contd)

LEP preliminary

Experiment	Channel	$\Delta E_{\mathrm{beam}} [\mathrm{MeV}]$
ALEPH	$\mu^+\mu^-\gamma$	$-167 \pm 91 \pm 48$
DELPHI	$\mu^+\mu^-\gamma$	$+113 \pm 75 \pm 27$
DELPHI	$\mathrm{q}\bar{\mathrm{q}}\gamma$	$-55 \pm 53 \pm 65$
L3	$\mu^+\mu^-\gamma$	$+ 10 \pm 115 \pm 22$
L3	$\mathrm{q}\bar{\mathrm{q}}\gamma$	$-46 \pm 33 \pm 51$
OPAL	$\mathrm{e^{+}e^{-}}\gamma$	$+ 40 \pm 136 \pm 78$
OPAL	$\mu^+\mu^-\gamma$	$-51 \pm 84 \pm 22$
OPAL	$\tau^+\tau^-\gamma$	$+301 \pm 199 \pm 148$
OPAL	$\mathrm{q}\bar{\mathrm{q}}\gamma$	$-66 \pm 34 \pm 70$
Combined	$1+1-\gamma$	$+$ 5 \pm 41 \pm 16
Combined	$\mathrm{q}\bar{\mathrm{q}}\gamma$	$-52 \pm 24 \pm 43$
Combined	$f ar{f} \gamma$	$-20 \pm 25 \pm 22$

energy constraints (contd)

ee
$$\rightarrow$$
 Z γ \rightarrow $\mu\mu\gamma$ (ff γ)

- Systematics?
 - Precise positions/angles in forward tracking system
 - or invariant mass recon. In forward system
 - θ ~ few degrees for high energy running

Energy spread effects on physics

ICLC, Paris

- ISR + beamstrahlung
 - ~Lum. loss at nominal √s
 - Provide radiative returns

- Linac energy spread
 - Can smear out narrow structures

LC Calorimetry (global really)

- FSR is the biggest effect.
- The underlying event is the second largest error (if cone $R \sim 0.7$).
- Calorimeter resolution is a minor effect.

 $\sigma_{M}\,/\,M\sim$ 13% without FSR

- ⇒ At the LC, the situation is reversed: Detection dominates.
- ⇒ Opportunity at the LC to significantly improve measurement of jets.

calorimetry (contd)

Complementarity with LHC:

LC should strive to do

physics with *all* final states.

- 1. Charged particles in jets more precisely measured in tracker
- 2. Jet energy 64% charged (typ.)

Separate charged/neutrals in calor.

- ⇒ The "Particle Flow" paradigm
- ECAL: dense, highly segmented
- HCAL: good pattern recognition

H. Videau

Energy Flow Algorithms

Dean Karlen, LCWS 2002

$$\begin{split} E_{\text{jet}} &= E_{\text{charged}} + E_{\text{photons}} + E_{\text{neut. had.}} \\ \sigma_{E\text{jet}}^2 &= \sigma_{E\text{charged}}^2 + \sigma_{E\text{photons}}^2 + \sigma_{E\text{neut.had.}}^2 + \sigma_{\text{confusion}}^2 \end{split}$$

Ignoring the (typically) negligible tracking term:

$$\sigma_{Ejet}^2 \approx (0.14)^2 (E_{jet} \cdot \text{GeV}) + \sigma_{confusion}^2 \approx (0.3)^2 (E_{jet} \cdot \text{GeV})$$

 $\sigma_{
m confusion}^2$ is the largest term of all

calorimetry (contd)

Expectations for jet resolution

- Let $\sigma(\text{confusion})=0$ (QCD+res)
- What can we expect for σ(conf)?
 - Requires full simulations with believable MC (Geant4?)
 - To be verified at test beams
 - Development of algorithms
- Studies to date: jet res ~ 0.3/ √ Ejet

Hope to see more PFA results

ICLC, Paris R. Frey

calorimetry (contd)

- Such a calorimeter will also do very well for:
 - Photons, including non-pointing
 - Electrons and muons
- Tau id. and polarization
 - 3rd generation
 - Yukawa coupling
 - Separation of tau final states

Hermiticity

TESLA

- This is a 4π issue, of course
- We focus on the forward region, which has been "under appreciated".

hermiticity (contd)

- Consider as an example: sleptons nearly massdegenerate with neutralinos
 - Favored by SUSY-WIMP consistency with CDM
- The SUSY events will look like 2-photon events...

unless the 2-photon electron is vetoed.

 Requires good forward veto coverage

hermiticity (contd)

Veto < 25 mrad?

- requires few ns readout (warm)
- TESLA: veto to 6 mrad (Lohmann)

At the LC, vertexing is (nearly) ideal

γγ

110

120

130

140

- Tiny, stable interaction <u>point</u>
- Small inner radius ~1 cm
- Clean events allow full reconstruction of secondary vertices → mass, charge, ...
- Beam duty cycle allows readout of even slow pixel detectors
- Pixels provide pileup immunity
- Moderate radiation

160

M_H(GeV)

⇒ Superior b,c (u,d) flavor tagging, tau's

Accelerator Technology

Warm or Cold ??

Yes, please!

Implications on detector design

(my opinion: small effects)

- energy spread
- bunch timing structure
- crossing angle

Linac beam energy spread

Linac energy spread

 $e^+e^- \rightarrow Zh$

T. Barklow

• Warm: ~0.3%

• Cold: ~0.1%

 Additional examples in *Machine-detector* interface sessions

$$Z \rightarrow e^{+}e^{-}, \mu^{+}\mu^{-} \sqrt{s} = 350 \text{ GeV } L = 500 \text{ fb}^{-1}$$

Beam crossing time structure

Timing is good

Warm detector concern:

Pileup of $\gamma\gamma$ hadrons over bx train

T. Barklow

Si/W ECal Timing ~ 1 ns

192 bx pileup (56 Hadronic Events/Train)

3 bx pileup (5ns)

Beam crossing angle

- Warm machine: required (1.4 ns bx)
 - 20 mrad
- Cold machine: optional
 - Advantage: comfortable beam diagnostics (energy, polarization measurements)
 - Disadvantage: small acceptance loss near beam line (1 cm)
 - the degenerate SUSY examples,
 - not easy to cover this, in any case
- Note:

The Dugan committee used crossing angles for both warm and cold

summary of design issues discussed

Technology choices: next talk

- Vertex detector
 - Inner radius
 - (material, readout speed)
- Central tracker
 - Momentum resolution
 - Efficiency: jets, decays,etc
 - Forward tracking
- Calorimeter
 - Segmentation
 - Timing
 - Hermiticity
- Muon det
- Large or Small?

Vertex detector inner radius

In favor of a larger radius

- Backgrounds
 - Pairs, photons, tracks (2-photon)
- More comfortable extraction
- Collimation wakefields ⇒ Lum reduction

Vertex detector inner radius (contd)

In favor of a smaller radius

Physics sensitivity

ZH, $H\rightarrow cc$

- significant improvement?
- more studies?

Large or small detector?

S or L? (contd)

- Warm vs. cold has technology correlations, not much (any?) for S vs L.
- Look forward to session on Thursday

Summary

- Goal: Push the envelope on measurement capabilities by exploiting the assets of the LC.
- LC a discovery facility let's design our experimental program accordingly.
- Need to continue simulation efforts while we ramp up for an interesting period of detector R&D.
- Interplay of warm/cold and large/small issues has been healthy
 has brought forward new issues... hopefully more this week!
- Apologies to those whose work was not mentioned !!