Triple-GEM perfomance in He-based mixtures

BINP group in TESLA TPC collaboration: A. Bondar, A. Buzulutskov, L. Shekhtman , A. Vasiljev

1

$$Q = rac{L}{E K_0} i_{prim} imes Gain imes F$$

for micropattern detectors feedback is proportional to drift field, so Q does not depend on drift field!

gas	He		Ne		Ar	
ion	He^+	He_2^+	Ne^+	Ne_2^+	Ar^+	Ar_2^+
$K_0, rac{cm^2}{V imes s}$	10.4	16.7	4.1	6.5	1.5	1.86

Alexander Vasiljev, 21 April, 2004, LCWS

Alexander Vasiljev, 21 April, 2004, LCWS

 $100 \ ns/div$

 $He + 10\% N_2, 1Atm$ $Gain \sim 4500$ charge-sensitive amplifier

 $4 \ \mu s/div
onumber K_0 = 14.5 rac{cm^2}{V imes s}$

Alexander Vasiljev, 21 April, 2004, LCWS

Alexander Vasiljev, 21 April, 2004, LCWS

Alexander Vasiljev, 21 April, 2004, LCWS

with capacitor 100 mV/divprimary (electron) signal

He, $Gain \sim 30000$

without capacitor 20 mV/divion-backdrift induced signal

Photon feedback- and ion backdrift- induced signal	lon backdrift- induced signal		He 295K, 3atm X-rays ∆Vgem = 242V Gain ~ 30000 Cu cathode Without C1		
Primary signal	28µs		3Gi Eg2-g3 =	=M : 1.2'	1kV/cm ∢
eni 20.0mVΩ	a tur pa tur n A a u pa a u pa	м 10.0µs	A Ch1	5	11.2mV
		11.20 %	ś		

Ar, P = 1Atm, $Gain \sim 17000$, $K_0 = 1.74 \frac{cm^2}{V \times s}$ (Compare to 1.50 and 1.86 $\frac{cm^2}{V \times s}$ for Ar^+ and Ar_2^+ , respectively)

He, P = 3Atm, $Gain \sim 30000$, $K_0 = 16.4 \frac{cm^2}{V \times s}$ (Compare to 10.4 and 16.7 $\frac{cm^2}{V \times s}$ for He^+ and He_2^+ , respectively)

Alexander Vasiljev, 21 April, 2004, LCWS

Summary

- One can reduce space-charge in TPC using a mixture with higher ion mobility.
- This mixture could be pure He or He-based plus some non-ageing components or else pure Ne or Ne-based.
 GEM works well whatever the case.
- Ion mobility of given mixture could be estimated with multi-GEM structure.