CCD Vertex Detector Charm-Tagging Performance

in Studies of Scalar Quarks

Alex Finch, André Sopczak

Lancaster University

Hanna Nowak DESY Zeuthen

- Introduction
- A CCD Vertex Detector (LCFI)
- A Charm Tagging Benchmark Reaction
- Event Selection
- Comparison of Detector Simulations
- Tagging Performance
- Varying Vertex Detector Design
- Conclusions

Introduction

Large challenge to develop a vertex detector for a future LC. Key aspects:

- Distance to interaction point of innermost layer (radiation hardness, beam background).
- Material absorption length (multiple scattering).
- Tagging performance.

While at previous and current accelerators (e.g. SLC, LEP, Tevatron) b-quark tagging has revolutionized many searches and measurements, c-quark tagging will be a very important tool at a future LC.

CDD Vertex Detector

LCFI Collaboration: Development of a CCD detector for a future LC.

5 CCD layers at 15, 26, 37, 48 and 60 mm. Each layer $< 0.1\% X_0$.

c-Quark Tagging: a Benchmark Reaction

Signal: Two charm jets and missing energy.

Benchmark reaction in the Supersymmetry framework: $e^+e^- \rightarrow \tilde{t}_1 \bar{\tilde{t}}_1 \rightarrow c \tilde{\chi}_1^0 \bar{c} \tilde{\chi}_1^0$ (Other benchmark reactions, e.g. in Higgs sector, $H \rightarrow c\bar{c}$)

Signal and Background Cross Section

Two scenarios:

- 1. Comparison previous SGV study: $m_{\tilde{t}_1} = 180 \,\text{GeV}, \, m_{\tilde{\chi}_1^0} = 100 \,\text{GeV}$
- 2. SPS-5 SUSY parameters: $m_{\tilde{t}_1} = 220.7 \text{ GeV}, m_{\tilde{\chi}_1^0} = 120 \text{ GeV}$

Decays mode (kinematics) $\tilde{t}_1 \rightarrow \tilde{\chi}_1^0 c$.

Signal and background cross section (pb):

$\tilde{t}_1\bar{\tilde{t}_1}(180/220.7)$	${ m We} u$	WW	$q\bar{q}$	$t\overline{t}$	ZZ	eeZ
CALVIN32	GRACE	WOPPER	HERWIG	HERWIG	COMPHEP	PYTHIA
0.0532/0.0164	5.59	7.86	12.1	0.574	0.864	0.6

For this performance study: no beam polarization. However, beam polarization is very important for mass and mixing angle determination.

Analysis Strategy

- Signal and Background generated for 500 fb⁻¹ and $\sqrt{s} = 500 \text{GeV}$
- Detector Simulation: SIMDET 4.03 (J. Schreiber et al.)
- b/c tagging algorithm (T. Kuhl et al.)
- Iterative Discriminant Analysis (IDA) for selection optimization
- Different Vertex Detector configurations

SIMDET Detector Simulation (cf. SGV)

$\tilde{t}_1 \rightarrow c \tilde{\chi}_1^0$ and 1000 fb $^{-1}$ Standard Model background simulated (180 GeV).					
Channel	Generated	$Preselection/500 \ fb^{-1}$	Previous SGV		
$\mathrm{c} ilde{\chi}_1^0$	50 k	48%	47%		
$q \overline{q}$	12169 k	64963	46788		
$t\overline{t}$	$620 \mathrm{k}$	32715	43759		
eeZ	$5740 \mathrm{\ k}$	24864	4069		
ZZ	$560 \mathrm{k}$	3100	4027		
$\mathrm{We} u$	$4859~\mathrm{k}$	252367	252189		
WW	$6800 \ k$	122621	115243		
Total bg		500631	466075		

After additional preselection $(E_{\rm vis}/E_{\rm cms} < 0.52, P_{\rm t}/E_{\rm vis} > 0.05)$:

Channel	$q\bar{q}$	WW	${ m We} u$	$t\overline{t}$	ZZ	eeZ	Total	
	6801	23278	226070	5267	125 (c:	2147 f. SGV:	263691 278377	events)

Iterative Discriminant Analysis (IDA)

- First half-sample for training. Second part for signal efficiency and backgrund rate determination.
- Two step process: IDA 1: signal reduced to 50% efficiency; IDA 2: fine-tuning

Without charm tag 7815 (cf. SGV 7265). With charm tag 3600 background events.

Signal vs. Background: c-Quark Tagging

After second IDA step, remaining backgrounds for 12% efficiency (180 GeV):

Without charm tag 680 (cf. SGV 400 events),

With charm tag 165 events.

SPS-5 Results (220.7 GeV)

Events remaining after 1st Iteration of IDA (25% efficiency):

Signal	Background	Charm Tagging
3800	5400	No
3800	2500	Yes

Events remaining after 2nd Iteration of IDA (12% efficiency):

Signal	Background	Charm Tagging
1800	170	No
1800	50	Yes

Varying Vertex Detector Design

Vertex detector absorption length:

- Normal thickness (TESLA TDR)
- Double thickness

Number of vertex detector layers:

- 5 layers innermost layer at 1.5 cm (like TDR)
- 4 layers innermost layer at 2.0 cm (Layer 1 removed)

For SPS-5 parameters (220.7 GeV):

		Remaining background events			
Thickness	Layers	(12% Signal)	(25% Signal)		
Normal	5	50	2200		
Normal	4	50	2600		
Double	5	70	2300		
Double	4	70	2600		

Conclusions

- c-quark tagging as a benchmark for vertex detectors. In Supersymmetry: Scalar top quarks.
- SIMDET detector simulation includes vertex detector (CCD LCFI).
- About 31 million events simulated.
- SIMDET and previous SGV kinematic distributions largely agree.
- c-tagging reduces background by about a factor 4 in the $\tilde{\chi}_1^0 c \tilde{\chi}_1^0 \bar{c}$ channel.
- Dedicated simulation with SPS-5 parameters: Possibility to compare with other vertex detector projects.
- First indication on expected background variation depending on detector design.