

Optimisation of the Ion Feedback in a GEM Setup for a TPC Readout

Michael Weber

Sabine Blatt Manuel Giffels Gordon Kaussen Martin Killenberg Sven Lotze Joachim Mnich Astrid Münnich Stefan Roth Manfred Tonutti Adrian Vogel

III. Physikalisches Institut B

International Conference on Linear Colliders

Paris, April 2004

Michael Weber

Optimisation of Ion Feedback

- Parametrisation of the charge transfer coefficients
- Optimisation of chamber settings
- Current and track measurements with optimized settings
- Micro Hole Strip Plates (MHSPs)
- Conclusion and outlook

Setup and Parameters

 3 GEM voltages and 4 electric fields (7 chamber parameters) determine charge transfer

 By parametrisation of measured transfer coefficients, quantities like ion feedback (*IF*) and eff. gain (*G_{eff}*) can be calculated from a set of these 7 parameters

Charge Transfer Coefficients

4

Collection Efficiency

$$C^{\pm} = \frac{N_{\rm e^-, I^+}}{N_{\rm e^-, I^+}}$$
 before GEM

$$X^{\pm} = \frac{N_{\rm e^-,I^+} ~{\rm extracted from ~GEM}}{N_{\rm e^-,I^+} ~{\rm in ~GEM-hole}}$$

Gain (single GEM)

$$G = \frac{N_{\rm e^-}}{N_{\rm e^-}}$$
 collected into hole

Charge Transfer Coefficients

5

Effective Gain (multiple GEMs)

$$G_{eff} = \frac{I_{\text{Anode}}}{I_{\text{primary}}} = \prod_{i=1}^{N_{\text{GEMs}}} C_i G_i X_i$$

$$IF := \frac{I_{\text{Cathode}}}{I_{\text{Anode}}}$$

$$\Rightarrow G_{\text{eff}} \cdot IF = \frac{I_{\text{Cathode}}}{I_{\text{primary}}}$$

$$\Rightarrow I_{\mathsf{Cathode}} \approx I_{\mathsf{primary}} \Leftrightarrow IF = \frac{1}{G_{\mathsf{eff}}}$$

For this Analysis: $G_{eff} = 10^4 \Rightarrow$ Goal: $IF = 10^{-4}$

Parametrisation of Transfer Coefficients

RWITH AACHEN

Michael Weber

TESLA

7

Brute Force:

- Parameter space spanned by five parameters (keeping drift and induction fields fixed) is scanned stepwise with a C program
- At every point the calculated ion feedback, effective gain and corresponding parameters are written to hard disk (root tree)
- Then the obtained data set can be searched for minima (e.g. with root macros)
- Optimized settings can then be written to a script file that controls our automated measurement application (xtc)

Ion Feedback vs. E_{Trans2}

Example for one Parameter:

Qualitative Results

Paremeter settings at minimal Ion Feedback

- E_{Drift} : fixed at 200 V/cm
- U_{GEM1} : small influence
- E_{Trans1} : maximal
- U_{GEM2}: small influence
- E_{Trans2} : minimal
- U_{GEM3}: maximal
- $E_{Induction}$: maximal

 U_{GEM1} and U_{GEM2} allow variation of eff. Gain, without changing the IF.

NTHAACHEN

Michael Weber

Measurement of IF in a Magnetic Field

The Test-TPC

RNITH AACHEN

Michael Weber

Optimisation of Ion Feedback

12

Application of a radioactive ⁵⁵Fe source at the cathode exactly opposite of the readout

- Continuous creation of a large amount of electrons
- Forming of an ion tube between source and readout

Track Distortions by High Ion Feedback

RNTHAACHEN

Track Distortions by reduced Ion Feedback

RWITH AACHEN

Micro Hole Strip Plates (MHSPs)

TESLA

Replace the first GEM with a MHSP:

Idea: Negative strip voltage \Rightarrow lons are collected on the strips, while electrons, due to diffusion, pass.

Summary and Outlook

TESLA

17

Standard GEMs:

- The qualitative influence of the individual chamber parameters on the ion feedback is understood
- The minimum ion feedback depends strongly on the maximal reachable fields and GEM voltages
- A magnetic field of 4 T decreases ion feedback by a factor of ≈ 2
- An ion feedback ≤ 2.5×10⁻³ was achieved with TDR-gas and is stable for ≥12 h (stability test without magnetic field)
- Check how settings optimized for IF affect dE/dx etc.

Summary and Outlook

TESLA

MHSPs:

- MHSPs offer an additional possibility for IF suppression
- First results look promising, but till now no improvement over normal GEMs is achieved
- further studies of this new technology have to be done

The goal of $IF = 10^{-4}$ seems unrealistic!!

 \Rightarrow check if higher ion feedback or lower effective gain are acceptable

Backup: Fit 1

- In e of backdrifting ions of infinitesimal thickness and infinite length $\Rightarrow \vec{E} = \frac{\alpha'}{r} \frac{\vec{r}}{r}$
- $v_{drift} \propto \vec{E}$ for small fields

Equation of motion for point: $\frac{d\vec{r}}{dt} = -M\vec{E}$ *M* is electron mobility In polar coordinates: $\frac{dr}{dt} = -M\frac{\alpha'}{r}$

$$\Rightarrow r(t) = \sqrt{r_0^2 - \alpha t}$$

Backup: Fit 2

20

Start with straight line x = ay + bin polar coordinates: $x = r \cos(\varphi)$ $y = r \sin(\varphi)$

$$r_0 = \frac{b}{\cos(\varphi_0) - a\sin(\varphi_0)}$$

 φ does not change with time

$$\Rightarrow r(\varphi, t) = \sqrt{\frac{b^2}{\left(\cos(\varphi) - a\sin(\varphi)\right)^2} - \alpha t}$$

Backup: Example for Fit

RWITHAACHEN

Michael Weber

Optimisation of Ion Feedback