Reconstructing sleptons in cascade decays at the FLC

Mikael Berggren

LPNHE, Paris VI & VII, Paris, FRANCE

Reconstructing sleptons in cascade decays at the FLC – p.1/2

Outline

- The kinematics of cascade decays.
- Reconstructing the sleptons.
- \mathbf{I} $\tilde{\mu}$ and \tilde{e} in SPS1a.
- Background, ISR, beam-strahlung, sensitivity to input assumptions.
- **SPS3**.
- **St**aus.
- A survey of SPS points.Conclusion.

The kinematics of cascade decays

Lets look at $e^+e^- \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_2^0$, with $\tilde{\chi}_2^0 \rightarrow l\tilde{l} \rightarrow ll \tilde{\chi}_1^0$ (or eg. $e^+e^- \rightarrow \tilde{\chi}_3^0 \tilde{\chi}_3^0$, with $\tilde{\chi}_3^0 \to Z \tilde{\chi}_2^0 \to Z Z \tilde{\chi}_1^0)$ Assume $M_{\tilde{\chi}^0_i}$ are known to some extent. Count unknowns and equations: Two $\tilde{\chi}_1^0$ four-momenta = 8 unknowns E & \bar{p} conservation + four mass-relations = 8 constraints. Hence, it should be possible to fully reconstruct the four-momenta, and since the SM particles are (Z, ℓ) are observed and measured in the detector the Four-momentum of the intermediate SUSY particle is measurable in each event There was no need to assume any value of the mass of this particle. The reconstruction is hence a direct measurement of the sparticle mass. Note that this is no rare process: As soon as pair-production threshold of the NNLSP is passed, the NLSP can be reconstructed. In eg, SPS1a, there are more $\tilde{\tau}$:s produced in $\tilde{\chi}_2^0 \tilde{\chi}_2^0$ decays, than in direct $\tilde{\tau}$ -pair

production!

Schematic view of the event. It's the red particles we want to reconstruct.

Reconstructing sleptons in cascade decays at the FLC – p.4/2

Actually, this is what the event looks like: Four leptons, missing energy and momentum, and nothing else.

First, sum the opposite charged leptons.

Because $M_{\tilde{\chi}_2^0}$ and $E_{be}{}^{am}$ are known, $|p_{\tilde{\chi}_2^0}|$ and $E_{\tilde{\chi}_2^0}$ are as well. $P_l{}^l$ is measured and $M_{\tilde{\chi}_1^0}$ is known, i.e. also $|p_{\tilde{\chi}_1^0}|$ and $E_{\tilde{\chi}_1^0}$ are known.

The azimuthal angle is not, so $\bar{p}_{\tilde{\chi}_2^0}$ is free to vary on cones around the lepton systems.

But: we do know the $\tilde{\chi}_2^0$:s are back-to-back.

So, we flip one of the cones over...

... and find the intersection, to get $\bar{p}_{\tilde{\chi}_2^0}$.

... and find the intersection, to get $\bar{p}_{\tilde{\chi}_2^0}$.

Flip back ...

... and calculate $\bar{p}_{\tilde{\chi}_1^0}$.

Translate the vectors

... and expand the lepton systems.

Finally: Add P_l to $P_{\tilde{\chi}^0_2}$ to get $P_{\tilde{\ell}}$.

In the plots following, these programs have been used to generate signal and background, simulate the detector, and to analyse the generated sample.

SUSY spectrum: SUSPECT. Generators: SUSYGEN 3.0 and PYTHIA 6.205 ISR: PHOTOS Beam-strahlung: CIRCE τ -decays: TAUOLA Detector simulation: SGV 2.32 β , which includes full covariance matrix, brems and γ -conversions, shower/track confusion.

Analysis: SGV native and TSTTAU (the DELPHI τ -finder for SUSY searches)

Problems:

Two solutions ... but two sleptons → choose solution which gives the same result.

Problems:

Two solutions ... but two sleptons
→ choose solution which gives the same result.

Two leptons

- Two solutions ... but two sleptons
 → choose solution which gives
 the same result.
- Two leptons ... but usually a ordering in momentum singles out the right one. Three-body decay
 → Dalitz plot. Expect bands for right choice, flat for wrong.

- Two solutions ... but two sleptons
 → choose solution which gives
 the same result.
- Two leptons ... but usually a ordering in momentum singles out the right one. Three-body decay
 → Dalitz plot. Expect bands for right choice, flat for wrong.
 - Two sides

- Two solutions ... but two sleptons
 → choose solution which gives
 the same result.
- Two leptons ... but usually a ordering in momentum singles out the right one. Three-body decay
 → Dalitz plot. Expect bands for right choice, flat for wrong.
- Two sides ... no problem if one side has a $\tilde{\mu}$, the other a \tilde{e} . If all are the same: No reason that a combination with a lepton from the wrong $\tilde{\chi}_2^0$ -decay should fall in the Dalitz-triangle.

In SPS1a:

 $\blacksquare M_{\tilde{\chi}_2^0}$ is 183 GeV/ c^2 $M_{\tilde{\mu}} = M_{\tilde{e}} = 144.73 \; \text{GeV}/c^2$ **SUSPECT** gives σ (e⁺e⁻ $\rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{2}^{0}$) = 82 fb. $\blacksquare BR(\tilde{\chi}_2^0 \to \tilde{\ell}\ell) = 14 \% \ (\tilde{\ell} \neq \tilde{\tau})$ ■ No other cascades open at 500 GeV $\rightarrow 41000 \ \tilde{\chi}_2^0 \tilde{\chi}_2^0$ events for $\mathcal{L} = 500 \ \text{fb}^{-1}$, 800 with both $\tilde{\chi}_2^0$ to $\tilde{\ell}\ell$. The total SUSY cross-section is 2015 fb, ie. 1 007 500 events. This

was the size of the sample generated

Select events by

- **Fo**ur charged leptons as only seen charged tracks.
- $| p_t > 10 \, \mathrm{GeV}/c$
- Visible mass between 100 and 300 GeV/c^2 .
- **Se**en energy < 300 GeV.
- **Se**en neutral energy < 150 GeV.
- **Thrust axis above 0.3 Rad.**
- **Calorimetric energy below 30**deg < 150 GeV.
- \approx NO Standard Model background !

Reconstruct events. 8 solutions...

- Reconstruct events. 8 solutions...
- Select only events in the Dalitz-triangle and ...

- Reconstruct events. 8 solutions...
- Select only events in the Dalitz-triangle and ...
- Plot the average of the two closest slepton-masses.

- Reconstruct events. 8 solutions...
- Select only events in the Dalitz-triangle and ...
- Plot the average of the two closest slepton-masses.

 $\sigma = 82 \text{ MeV}/c^2$ Efficiency = 33 %.

One might suspect that a number of things might cause problems:

- Beam-strahlung
- **ISR**
- Input assumptions on $M_{\tilde{\chi}_{i}^{0}}$
- Background

One might suspect that a number of things might cause problems:

- Beam-strahlung
- **ISR**
- Input assumptions on $M_{\tilde{\chi}_{i}^{0}}$
- Background

One might suspect that a number of things might cause problems:

- Beam-strahlung
- **ISR**
- Input assumptions on $M_{\tilde{\chi}^0_i}$
- Background

One might suspect that a number of things might cause problems:

Beam-strahlung NO

ISR

- Input assumptions on $M_{ ilde{\chi}_{i}^{0}}$
- Background
- Beam-strahlung NO
- ISR ISR
- Input assumptions on $M_{\tilde{\chi}_{i}^{0}}$
- Background

- Beam-strahlung NO
- ISR ISR
- Input assumptions on $M_{\tilde{\chi}_{i}^{0}}$
- Background

- Beam-strahlung NO
- **ISR**
- Input assumptions on $M_{\tilde{\chi}_{i}^{0}}$
- Background

- Beam-strahlung NO
- ISR NO
- Input assumptions on $M_{\widetilde{\chi}_{i}^{0}}$
- Background

- Beam-strahlung NO
- ISR NO
- Input assumptions on $M_{\tilde{\chi}_{i}^{0}}$
- Background

- Beam-strahlung NO
- ISR NO
- Input assumptions on $M_{\tilde{\chi}^0_i}$
- Background

- Beam-strahlung NO
- ISR NO
- **I**nput assumptions on $\overline{M_{\tilde{\chi}_{i}^{0}}}$ **NO**
- Background

- Beam-strahlung NO
- ISR NO
- **I**nput assumptions on $M_{\tilde{\chi}_i^0}$ **NO**
- Background

One might suspect that a number of things might cause problems:

- Beam-strahlung NO
- ISR NO
- Input assumptions on $M_{\tilde{\chi}_{i}^{0}}$ NO
- Background NO

The main background is $\tilde{e}_{L}\tilde{e}_{R}$, with $\tilde{e}_{L} \rightarrow \tilde{\chi}_{2}^{0}e \rightarrow \tilde{\ell} \ell$.

One might suspect that a number of things might cause problems:

- Beam-strahlung NO
- ISR NO
- Input assumptions on $M_{ ilde{\chi}^0_i}$ NO
- Background NO

The main background is $\tilde{e}_{L}\tilde{e}_{R}$, with $\tilde{e}_{L} \rightarrow \tilde{\chi}_{2}^{0}e \rightarrow \tilde{\ell} \ell$. $\sigma = 83 \text{ MeV}/c^{2}$ 90 events in the peak (11 % efficiency). $\rightarrow \delta(M_{\tilde{\ell}}) = \frac{\sigma}{\sqrt{N}} = 8.7 \text{ MeV}/c^{2}$. Fitted mass = 174.74 GeV/c² (input was 174.73 GeV/c²).

In SPS 3

S

$$M_{\tilde{\chi}_{2}^{0}} \text{ is } 308 \text{ GeV}/c^{2}$$

$$M_{\tilde{\mu}_{L}} = M_{\tilde{e}_{L}} = 289.96 \text{ GeV}/c^{2}$$

$$M_{\tilde{\mu}_{R}} = M_{\tilde{e}_{R}} = 181.83 \text{ GeV}/c^{2}$$
USPECT gives

$$\sigma(e^+e^- \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_2^0) = 21 \text{ fb.}$$

$$BR(ilde{\chi}^0_2
ightarrow ilde{\ell}_L\ell)$$
= 16 % $(ilde{\ell}
eq ilde{ au})$

$$BR({ ilde \chi}^0_2 o { ilde \ell}_R \ell) = 2 \ \% \ ({ ilde \ell}
eq { ilde au})$$

No other cascades open at 800 GeV

 $\rightarrow 10500 \ \tilde{\chi}_2^0 \tilde{\chi}_2^0$ events for $\mathcal{L} = 500 \ \text{fb}^{-1}$, 340 with both $\tilde{\chi}_2^0$ to $\tilde{\ell} \ \ell$.

The total SUSY cross-section is 593 fb, ie. 269 500 events, which was generated.

Selection: as SPS1a, with rescaling for the higher machine energy

Selection: as SPS1a, with rescaling for the higher machine energy

Reconstruct events.

- Selection: as SPS1a, with rescaling for the higher machine energy
- Reconstruct events.
- Select only events in the Dalitztriangle. Note overlap: the right pairing in one case \approx the wrong pairing in the *other* case.

The average of the two closest masses gives a peak for the one with the larger BR - $\tilde{\ell}_L$ - but not for the other: it is hidden in wrong-pairing blob from the $\tilde{\ell}_L$.

The average of the two closest masses gives a peak for the one with the larger BR - $\tilde{\ell}_L$ - but not for the other: it is hidden in wrong-pairing blob from the $\tilde{\ell}_L$.

Plot one pairing, cut out events where the *other* pairing is close to $M_{\tilde{\ell}_L}$, find the peak, and adjust the cut.

- The average of the two closest masses gives a peak for the one with the larger BR - $\tilde{\ell}_L$ - but not for the other: it is hidden in wrong-pairing blob from the $\tilde{\ell}_L$.
- Plot one pairing, cut out events where the *other* pairing is close to $M_{\tilde{\ell}_L}$, find the peak, and adjust the cut.

Zoom in

- The average of the two closest masses gives a peak for the one with the larger BR - $\tilde{\ell}_L$ - but not for the other: it is hidden in wrong-pairing blob from the $\tilde{\ell}_L$.
- Plot one pairing, cut out events where the *other* pairing is close to $M_{\tilde{\ell}_L}$, find the peak, and adjust the cut.

Zoom in

 $\sigma_{L(R)} = 103 \ (176) \text{MeV}/c^2$ 50 (18) events in the peak $\rightarrow \delta(M_{\tilde{\ell}LR}) = 14.5 \ (41.5) \ \text{MeV}/c^2.$ Fitted mass = 290.0 (181.9) $\ \text{GeV}/c^2$ (input was 289.96 (181.83) $\ \text{GeV}/c^2$).

"Usually", $BR(\tilde{\chi}_2^0 \to \tilde{\tau})$ is much bigger than that to \tilde{e} or $\tilde{\mu}$.

"Usually", $BR(\tilde{\chi}_2^0 \to \tilde{\tau})$ is much bigger than that to \tilde{e} or $\tilde{\mu}$. Problem: Neutrinos \to more unknowns, 3 per neutrino... = 12

"Usually", $BR(\tilde{\chi}_2^0 \to \tilde{\tau})$ is much bigger than that to \tilde{e} or $\tilde{\mu}$. Problem: Neutrinos \to more unknowns, 3 per neutrino... = 12

Look at $e^+e^- \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_2^0 \rightarrow \ell \tilde{\ell} \tau \tilde{\tau}$ only: Only two neutrinos $\rightarrow 6$.

- "Usually", $BR(\tilde{\chi}_2^0 \to \tilde{\tau})$ is much bigger than that to \tilde{e} or $\tilde{\mu}$. Problem:
- Neutrinos \rightarrow more unknowns, 3 per neutrino... = 12
 - Look at $e^+e^- \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_2^0 \rightarrow \ell \tilde{\ell} \tau \tilde{\tau}$ only: Only two neutrinos $\rightarrow 6$.
 - Momentum and mass of the τ products measured, and M_{τ} is known \rightarrow two mass-relations \rightarrow 4.

- "Usually", $BR(\tilde{\chi}_2^0 \to \tilde{\tau})$ is much bigger than that to \tilde{e} or $\tilde{\mu}$. Problem:
- Neutrinos \rightarrow more unknowns, 3 per neutrino... = 12
 - Look at $e^+e^- \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_2^0 \rightarrow \ell \tilde{\ell} \tau \tilde{\tau}$ only: Only two neutrinos $\rightarrow 6$.
 - Momentum and mass of the τ products measured, and M_{τ} is known \rightarrow two mass-relations \rightarrow 4.
 - Choose E_{τ} and the azimuthal angle of the ν_{τ} around the τ direction. If $\Theta_{\tau-\nu}$ is much smaller than the angle between the lepton and the $\tilde{\chi}_1^0$ it usually is -the azimuthal angle has almost no influence on the invariant mass $\rightarrow 2$.

- "Usually", $BR(\tilde{\chi}_2^0 \to \tilde{\tau})$ is much bigger than that to \tilde{e} or $\tilde{\mu}$. Problem:
- Neutrinos \rightarrow more unknowns, 3 per neutrino... = 12
 - Look at $e^+e^- \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_2^0 \rightarrow \ell \tilde{\ell} \tau \tilde{\tau}$ only: Only two neutrinos $\rightarrow 6$.
 - Momentum and mass of the τ products measured, and M_{τ} is known \rightarrow two mass-relations \rightarrow 4.
 - Choose E_{τ} and the azimuthal angle of the ν_{τ} around the τ direction. If $\Theta_{\tau-\nu}$ is much smaller than the angle between the lepton and the $\tilde{\chi}_1^0$ it usually is -the azimuthal angle has almost no influence on the invariant mass $\rightarrow 2$.
 - **Constrain the non-** $\tilde{\tau}$ decay to give the right $M_{\tilde{\mu}}(\text{or } M_{\tilde{e}}) \to \mathbf{I}$ unknown!

Use all available information to make the best guess of the energy of the τ in the first decay (the $\tilde{\chi}_2^0$ decay). Includes $E_{jet}, M_{jet}, M_{\tau}, M_{\tilde{\chi}_2^0}$. Also make an initial guess on $M_{\tilde{\tau}}$.

Use all available information to make the best guess of the energy of the τ in the first decay (the $\tilde{\chi}_2^0$ decay). Includes $E_{jet}, M_{jet}, M_{\tau}, M_{\tilde{\chi}_2^0}$. Also make an initial guess on $M_{\tilde{\tau}}$.

Use all available information to make the best guess of the energy of the τ in the first decay (the $\tilde{\chi}_2^0$ decay). Includes $E_{jet}, M_{jet}, M_{\tau}, M_{\tilde{\chi}_2^0}$. Also make an initial guess on $M_{\tilde{\tau}}$.

Use all available information to make the best guess of the energy of the τ in the first decay (the $\tilde{\chi}_2^0$ decay). Includes $E_{jet}, M_{jet}, M_{\tau}, M_{\tilde{\chi}_2^0}$. Also make an initial guess on $M_{\tilde{\tau}}$.

Calculate the energy of the second τ .

- Use all available information to make the best guess of the energy of the τ in the first decay (the $\tilde{\chi}_2^0$ decay). Includes $E_{jet}, M_{jet}, M_{\tau}, M_{\tilde{\chi}_2^0}$. Also make an initial guess on $M_{\tilde{\tau}}$.
- Calculate the energy of the second τ .
- Verify the angles, the quality of the guess *a posteriori*.

In SPS1a, $M_{\tilde{\tau}_1}$ is 135.37 GeV/ c^2 . $BR(\tilde{\chi}_2^0 \to \tilde{\tau}^{\tau}) = 86 \% \to 9900$ mixed events expected at $\mathcal{L} = 500 \text{ fb}^{-1}$.

Same cuts as for \tilde{e} and $\tilde{\mu}$ except that four τ :s (DELPHI τ -algorithm), rather than four light leptons was requested.

The main background is $\tilde{e}_{L}\tilde{e}_{R}$, with $\tilde{e}_{L} \to \tilde{\chi}_{2}^{0} e \to \tilde{\tau}^{\tau}$.

In SPS1a, $M_{\tilde{\tau}_1}$ is 135.37 GeV/ c^2 . $BR(\tilde{\chi}_2^0 \to \tilde{\tau}^{\tau}) = 86 \% \to 9900$ mixed events expected at $\mathcal{L} = 500 \text{ fb}^{-1}$.

Same cuts as for \tilde{e} and $\tilde{\mu}$ except that four τ :s (DELPHI τ -algorithm), rather than four light leptons was requested.

The main background is $\tilde{e}_{L}\tilde{e}_{R}$, with $\tilde{e}_{L} \rightarrow \tilde{\chi}_{2}^{0} e \rightarrow \tilde{\tau}^{\tau}$.

In SPS1a, $M_{\tilde{\tau}_1}$ is 135.37 GeV/ c^2 . $BR(\tilde{\chi}_2^0 \to \tilde{\tau}^{-\tau}) = 86 \% \to 9900$ mixed events expected at $\mathcal{L} = 500 \text{ fb}^{-1}$.

Same cuts as for \tilde{e} and $\tilde{\mu}$ except that four τ :s (DELPHI τ -algorithm), rather than four light leptons was requested.

The main background is $\tilde{e}_{L}\tilde{e}_{R}$, with $\tilde{e}_{L} \rightarrow \tilde{\chi}_{2}^{0} e \rightarrow \tilde{\tau}^{\tau}$.

For now, kill this by demanding

two μ :s and no electrons.

In SPS1a, $M_{\tilde{\tau}_1}$ is 135.37 GeV/ c^2 . $BR(\tilde{\chi}_2^0 \to \tilde{\tau}^{\tau}) = 86 \% \to 9900$ mixed events expected at $\mathcal{L} = 500 \text{ fb}^{-1}$.

Same cuts as for \tilde{e} and $\tilde{\mu}$ except that four τ :s (DELPHI τ -algorithm), rather than four light leptons was requested.

The main background is $\tilde{e}_L \tilde{e}_R$, with $\tilde{e}_L \to \tilde{\chi}_2^0 e \to \tilde{\tau} \tau$. For now, kill this by demanding

two μ :s and no electrons.

In final fit, demand that $V(E_{\tau}|E_{jet}, M_{jet})$ and the $\tau - \tilde{\tau}$ decay-angle are small

In SPS1a, $M_{\tilde{\tau}_1}$ is 135.37 GeV/ c^2 . $BR(\tilde{\chi}_2^0 \to \tilde{\tau}^{\tau}) = 86 \% \to 9900$ mixed events expected at $\mathcal{L} = 500 \text{ fb}^{-1}$.

Same cuts as for \tilde{e} and $\tilde{\mu}$ except that four τ :s (DELPHI τ -algorithm), rather than four light leptons was requested.

The main background is $\tilde{e}_L \tilde{e}_R$, with $\tilde{e}_L \to \tilde{\chi}_2^0 e \to \tilde{\tau} \tau$. For now, kill this by demanding

two μ :s and no electrons.

In final fit, demand that $V(E_{\tau}|E_{jet}, M_{jet})$ and the $\tau - \tilde{\tau}$ decay-angle are small

 $\sigma = 5.07 \text{ GeV}/c^2$ 176 events in the peak (7 % efficiency). $\rightarrow \delta(M_{\tilde{\tau}}) = \frac{\sigma}{\sqrt{N}} = 380 \text{ MeV}/c^2$. Fitted mass = 135.3 GeV/c² (input was 135.4 GeV/c²).

Some checks:

Some checks:

 $M_{\tilde{\tau}} \text{ is input to the guess. Does it}$ matter?
Some checks:

• $M_{\tilde{\tau}}$ is input to the guess. Does it matter?

Some checks:

• $M_{\tilde{\tau}}$ is input to the guess. Does it matter? NO

Some checks:

- $M_{\tilde{\tau}} \text{ is input to the guess. Does it}$ matter? NO
- The peak is a big blob. Maybe it's just a Jacobian ?

Some checks:

 $M_{\tilde{\tau}}$ is input to the guess. Does it matter? NO

The peak is a big blob. Maybe it's just a Jacobian ?

Some checks:

• $M_{\tilde{\tau}}$ is input to the guess. Does it matter? NO

The peak is a big blob. Maybe it's just a Jacobian ?

Vary $\Theta_{mix} \to \text{vary } M_{\tilde{\tau}}$.

Some checks:

 $M_{\tilde{\tau}}$ is input to the guess. Does it matter? NO

The peak is a big blob. Maybe it's just a Jacobian ?

Vary $\Theta_{mix} \to \text{vary } M_{\tilde{\tau}}$.

Does the peak move with the input?

Some checks:

 $M_{\tilde{\tau}}$ is input to the guess. Does it matter? NO

The peak is a big blob. Maybe it's just a Jacobian ?

Vary $\Theta_{mix} \to \text{vary } M_{\tilde{\tau}}$.

Does the peak move with the input? YES

Some checks:

 $M_{\tilde{\tau}}$ is input to the guess. Does it matter? NO

The peak is a big blob. Maybe it's just a Jacobian ? NO

- Vary $\Theta_{mix} \to \text{vary } M_{\tilde{\tau}}$.
- Does the peak move with the input? YES

A Survey

In which of the SPS mSUGRA points are there cascades accessible for a sub-TeV LC ?

	E _{cms}					
	500		800		1000	
SPS point	$\widetilde{\ell}$	$ ilde{\chi}^0_i$	$\widetilde{\ell}$	$ ilde{\chi}^0_i$	$\widetilde{\ell}$	$ ilde{\chi}^0_i$
1a	Y'	Ν	Y'	Y	Y'	Y
2	Ν	Y	Ν	Y	Ν	Y
3	Ν	Ν	Y'	Ν	Y'	Ν
4	Ν	Ν	Y	Y	Y	Y
5	Y'	N	Y'	N	Y'	N
6	N	N	N	Y	N	Y

It is possible to fully reconstruct the intermediate state in double cascade decays

It is possible to fully reconstruct the intermediate state in double cascade decays

Such channels are always present, if the energy is large enough

It is possible to fully reconstruct the intermediate state in double cascade decays

Such channels are always present, if the energy is large enough

In SPS1a - at 500 GeV, with $L = 500 \text{ fb}^{-1}$ - this method gives:

It is possible to fully reconstruct the intermediate state in double cascade decays

- Such channels are always present, if the energy is large enough
- In SPS1a at 500 GeV, with $L = 500 \text{ fb}^{-1}$ this method gives:
 - $\delta(M_{\tilde{e}}) = \delta(M_{\tilde{\mu}}) = 8.7 \text{ MeV}/c^2.$
 - $\delta(M_{\tilde{\tau}}) = 380 \text{ MeV}/c^2.$
 - $\delta(M_{\tilde{\chi}_2^0}) =$ work in progress

These numbers can be ameliorated with more sophisticated analysis.

It is possible to fully reconstruct the intermediate state in double cascade decays

- Such channels are always present, if the energy is large enough
- In SPS1a at 500 GeV, with $L = 500 \text{ fb}^{-1}$ this method gives:
 - $\delta(M_{\tilde{e}}) = \delta(M_{\tilde{\mu}}) = 8.7 \text{ MeV}/c^2.$
 - $\delta(M_{\tilde{\tau}}) = 380 \text{ MeV}/c^2.$
 - $\delta(M_{\tilde{\chi}_2^0}) =$ work in progress

These numbers can be ameliorated with more sophisticated analysis.

The result takes background, ISR, beam-strahlung, τ decays, detector effects, and realistic solutions for ambiguities into account.

You used to think that a sparticle is just an end-point or an edge?

You used to think that a sparticle is just an end-point or an edge?

Not !

You used to think that a sparticle is just an end-point or an edge?

Not ! It's a peak !!

