APD studies for tileHCAL

J. Cvach Institute of Physics AS CR, Prague collaboration

APDs and preamplifiers
 Energy scan with DESY beam in minical
 Conclusions

LCWS Paris, April 21, 2004

J. Cvach, APD & Calice

APDs

APDs is considered as an alternative photodector for tileHCAL wrt SiPM

Lower gain (~100-200), higher quantum ε~80%

→Low noise preamps and stable power supplies $(\Delta U/U \sim 10^{-4}$ for 1% gain stability)

& expensive

- 🔀 We use Hamamatsu:
 - Single channel APDs S8664-55 (3x3 mm²)
 - <u>32ch</u>, matrix S8550 (with 1x1 mm² pads)
 - 3 types of preamps available on PCB (now 9 channels):
 - Prague: voltage preamp discrete components
 - LAL: charge preamp chip 18 channels 2 modifications
 - Minsk (Gilitski) charge preamplifier –1 integrated channel

PCB with 16 ch. voltage preamp.

- Spread of APD gain ~ 50% at U_{bias} = 420 V for the voltage preamp.
- \swarrow S/N ~ 4-6 for U_{bias} at 420 V.

Working at lower U_{bias} -> more stable APD regime. Preamp gain can be adjusted.
 Shower signal in calorimeter must be attenuated. 10 bit ADCs have limited range.

J. Cvach, APD & Calice

MIP calibration of APDs

- 3 GeV e⁺ beam shot through cassettes pulled off absorbers
- Fit in all channels:

LCWS Paris, April 21, 2004

- Gaussian for pedestal
- Gaussian & Landau distribution (sampling fluctuations) for positron
- MIP = (positron pedestal) peaks

renormalization constant for each channel

- \ge Energy(in MIPs) = Σ over channels in MIPs
- by + 1 MIP channel into E_{Σ} (corrected)

Cross talk between channels

Minical in beam

 λi

→ change of pedestal for channels not optically connected to scintillator – done with (LAL preamp) negative cross talk ≈ -1 % xtalk(ch k) =(S-ped)_{ch k} / $\sum_{central}$ (S-ped)_{ch i}

Cross talk < 0.5% for Minsk preamp in calibration
runs</pre>

LED Monitoring of APD's

- LED light 10 Hz to all APDs
- APDs stable within ~ 1% over period 1 – 2 hours, typical run period
- Temperature variations in minical:
 - < 1.4° C over period of 24 hours

- APD temperature monitored by the slow control system
- APD response to LED signal recorded (corrected to a nominal LED signal)
- 🐱 Linear: M(T) ~ P1 + P2 * T
 - → 1/M dM/dT ~ -2.4%/deg

depends on gain M (each APD own curve?)

- Good reproducibility of monitoring obtained
 Next steps:
- Correction function for all APDs
- LED/PD corrections on single event level
- Can LED/PD work without temperature measurements as for MAPMs and SiPMs?

LCWS Paris, April 21, 2004

Conclusions

- Tests with two preampliers finished data analysis is in progress
 - \rightarrow first results reported
 - results look good, good linearity obtained, good time stability
 - The sophisticated LED calibration system is available
 - \rightarrow we understand temperature monitoring, can correct for T variation
- Beam tests with other preamplifiers will follow
- APD photodectors are competitive readout for analog HCAL we expect to reach performance comparable to SiPM

LCWS Paris, April 21, 2004

J. Cvach, APD & Calice

Photocathode homogeneity

Thermobox for APD 7 dependence

- Significant APD sensitivity to the temperature
- Precise temperature monitoring
- Knowledge of APD gain dependence on T
- Dedicated equipment needed Peltier cell

LCWS Paris, April 21, 2004

- stability 0.2 deg, resolution 0.1 deg
- actual & preset temperature display
- status indicated by LEDs construction in progress

at high gains: 15%/V, 11%/K

APDs & physics prototype

15× APD

Material for 3 planes of physics prototype:

• tile size - 60 x 60mm²

- 225 tiles/plane (x3) = 675 tiles
- 225 APD ~30 k€ (Hamamatsu)
- WLS & calibration fibres 550m

tile size 120 x 120mm²

- 64 tiles/plane (x3) = 192 tiles
- 64 APD
- WLS & calibration fibres 160m
- With the current APD price → 3 planes of ppt can be considered only
- It is desirable to test an alternative photodector wrt SiPMs

In case cheaper APDs will be found → solution with 1APD/tile as for SiPMs

of mask for APD

Cide vien

< 200 men

