LCWS 2004, Paris

Flavour tagging performance analysis

for vertex detectors

Sonja Hillert (Oxford) on behalf of the LCFI collaboration

Introduction: aim of the studies presented Introduction: aim of the studies presented	 aim at providing a guideline for vertex detector design, e.g. 	 How close to the interaction point does the inner layer need to be? 	 Which layer thickness should be aimed at? (multiple scattering) 	How many layers are needed?	to answer these questions study e.g.	 impact parameter resolution 	 vertex charge reconstruction 	 specific physics channels expected to be sensitive (future) 	\succ need to be sure to use all available information that might depend on	detector design $ ightarrow$ develop existing flavour tagging tools further
À									Å	σ

Software tools

Java analysis studio, version 3 (JAS3), by T. Johnson

http://jas.freehep.org/jas3/index.html

- object oriented software being developed at SLAC
- expected to provide access to a broad variety of tools via a

standardised user-interface in the future

Simulation a Grande Vitesse (SGV) version 2.31 by M. Berggren

http://berggren.home.cern.ch/berggren/sgv.html

- flexible, well-tested fast simulation, originated from DELPHI
- interfaced to PYTHIA version 6.1.52
- JADE algorithm (y-cut 0.04) for jet finding
- includes (thanks to V. Adler) flavour-tagging code by R. Hawkings

as used in **BRAHMS**

vertex finding: ZVTOP by D. Jackson

Impact parameter resolution

study based on single pions, generated using SGV

impact parameter in Rφ at track perigee

detector geometries:

standard detector: 5 layers

(each 0.064 % X₀)

at radii 15 mm to 60 mm

- double layer thickness
- beam-pipe with Ti-liner (0.07 % X₀)
- 4 layers at radii 25 mm to 60 mm

- increasing material budget has moderate effect, but
- performance strongly suffers when beam-pipe radius is increased

Ο
O
Τ
O
σ
C
W
Ð

preliminary results from an SGV-based study

> Motivation: discern charged b jets ($Q_{vtx} = -1$) from charged b-bar jets ($Q_{vtx} = +1$) 13600 events with exactly 2 jets with $\cos \angle (p_{J_1}, p_{J_2}) < -0.95$ found within ▶ study monoenergetic jets from $e^+e^- \rightarrow \gamma Z \rightarrow b\bar{b}$ at $E_{cM} = 200 \text{ GeV}$: thrust angle range $20^{\circ} < \theta < 160^{\circ}$

(b or b-bar) by searching for MC B-hadron 4000 → B-hadron successfully identified for determine generator level type of jet and finding corresponding charge close to jet $\cos \angle (p_{\rm B}, p_{\rm J}) > 0.95$ 23500 jets

> at generator level, 40 % of these jets stem from charged hadrons

Vertex charge reconstruction

- ➤ run ZVTOP to find vertex candidates, require tracks have d₀ < 0.3 (1.0) cm</p>
- > seed vertex: candidate furthest from IP
- ➤ assign tracks to seed, which

3000

0
•=
O
0
Ø
+
Ö
H
2
2
M
X
Ð
Ť
e

- ➤ in physics events, jet-flavour tagging required
- \succ in this preliminary study, the 'Pt corrected vertex mass', $M_{_{
 m Pt}}$,
- is used as tag-parameter:

- sum up four-momenta of tracks assigned to seed:
- find \mathbf{P}_{vtx} and vertex mass
- apply kinematic correction to partially recover effect of missing neutral particles:

$$\mathbf{M}_{\mathbf{Pt}} = \left\langle \mathbf{M}_{\mathbf{Vtx}}^{2} + \left| \mathbf{P}_{\mathbf{T}}^{\mathbf{Vtx}} \right|^{2} + \left| \mathbf{P}_{\mathbf{T}}^{\mathbf{Vtx}} \right|$$

Sonja Hillert, University of Oxford

100

+ # (jets) from b-bar quark with $Q_{\rm Vtx}$ = +1

р. 8

M_{Pt}(Jet) (GeV)

<u>Vertex charge: results</u>

standard detector geometry, different versions of tagging and of track assignment: tagging and track assignment need to be optimised before detector geometries can be compared

р. 9

Sonja Hillert, University of Oxford

LCWS 2004, Paris

Explicit use of neutral information

preliminary feasibility study based on JAS3, neural-net approach

Can non-vertex information, e.g. calorimeter, aid the performance ?

- $\succ \mathbf{Z}^{0} \rightarrow \mathbf{b}\overline{\mathbf{b}}, \mathbf{c}\overline{\mathbf{c}}$ events
- ➤ SiD detector simulation
- Java version of ZVTOP (by W. Walkowiak)
- use Neural Network
 (cjnn by S. Pathak) with vertexand neutral information as input
- > neutral information: highest energy π⁰ in jet, using MC truth

Sonja Hillert, University of Oxford

LCWS 2004, Paris

p. 11

Summary

impact parameter resolution degrades considerably with increasing

beam-pipe radius

- > study of vertex charge reconstruction in terms of purity vs efficiency shows dependence on methods to assign tracks to seed vertex and on jet flavour-tagging
- → these algorithms need to be optimised before effect of varying the detector geometry can be studied
- > preliminary neural network study: adding highest energy π⁰ information may improve b-tag efficiency and c-tag purity

Additional Material

LCWS 2004, Paris

Additional Material ~ Additional Material

p. 14

Compare mis-tagged jets to full sample:

– Additional Material

Additional Material ~ Additional Material

- mis-tagged jets more likely to be found in jets with low Pt-corrected mass
- might gain from running track assignment for primary vertex-associated tracks

Using neutral information: kinematics

Kinematic properties of the highest energy π⁰ from 45 GeV jets:

LCWS 2004, Paris

p. 16

Additional Material ~ Additional Material ~ Additional Material

b-tag efficiency in multijet events

dependence of b-tag efficiency on energy more significant than dependence on angle between jets