Little Higgs models and precision EW data*

Aldo Deandrea
 Institut de Physique Nucléaire
 University Lyon I

- Introduction
- Littlest Higgs
- Little Higgs and approximate custodial SU(2)
- Low energy precision data
- Conclusions
* hep-ph/0311038 (JHEP 0402:032 2004) with R. Casalbuoni and M. Oertel

Introduction

Precision EW data indicate SM with a light Higgs $m_{H}<219 \mathrm{GeV}$ at 95% CL (lepewwg.web.cern.ch/LEPEWWG)

Littlest Higgs*

Model parameters
$\tan \theta=s / c=g_{2} / g_{1}, \tan \theta^{\prime}=s^{\prime} / c^{\prime}=g_{2}^{\prime} / g_{1}^{\prime}$ new $S U(2)$ and $U(1)$ mixing f symmetry breaking scale $\mathcal{O} \mathrm{TeV} \quad v^{\prime}$ scalar triplet vev
m_{H} Higgs mass $\quad m_{T}$ heavy vector top mass

* Arkani-Hamed et al. hep-ph/0206021

The model is based on $S U(5) \rightarrow S O(5)$ global symmetry breaking (24-10=14 Goldstone bosons) by a vev of the order f

$$
\langle\Sigma\rangle=\left(\begin{array}{ccc}
0 & 0 & \mathbb{1}_{2} \\
0 & 1 & 0 \\
\mathbb{1}_{2} & 0 & 0
\end{array}\right)
$$

4 are eaten by the gauge bosons of the broken gauge group. The Goldstone boson matrix is

$$
\Pi=\left(\begin{array}{ccc}
0 & h^{\dagger} / \sqrt{2} & \phi^{\dagger} \\
h / \sqrt{2} & 0 & h^{*} / \sqrt{2} \\
\phi & h^{T} / \sqrt{2} & 0
\end{array}\right)
$$

h transforms as a doublet and ϕ as a triplet. The gauge symmetry breaking is $[S U(2) \times U(1)]^{2} \rightarrow S U(2) \times U(1)$.

The scalar sigma model field can be written as

$$
\Sigma=e^{i \Pi / f}\langle\Sigma\rangle e^{i \Pi^{T} / f}=e^{2 i \Pi / f}\langle\Sigma\rangle
$$

The kinetic term for the scalar fields is given by

$$
\mathcal{L}_{k i n}=\frac{1}{2} \frac{f^{2}}{4} \operatorname{Tr}\left[D_{\mu} \Sigma D^{\mu} \Sigma\right]
$$

with the covariant derivative defined as

$$
D_{\mu} \Sigma=\partial_{\mu} \Sigma-i\left(A_{\mu} \Sigma+\Sigma A_{\mu}^{T}\right) .
$$

A_{μ} is the gauge boson matrix:

$$
A_{\mu}=g_{1} W_{\mu}^{1 a} Q_{1}^{a}+g_{2} W_{\mu}^{2 a} Q_{2}^{a}+g_{1}^{\prime} B_{\mu}^{1} Y_{1}+g_{2}^{\prime} B_{\mu}^{2} Y_{2},
$$

Q_{i}^{a} are the generators of the two $S U(2), Y_{i}$ those of the two $U(1)$ groups.

After symmetry breaking the gauge boson matrix can be diagonalized by the following transformations:

$$
\begin{aligned}
W & =s W_{1}+c W_{2} & W^{\prime} & =-c W_{1}+s W_{2} \\
B & =s^{\prime} B_{1}+c^{\prime} B_{2} & B^{\prime} & =-c^{\prime} B_{1}+s^{\prime} B_{2} .
\end{aligned}
$$

s, c, s^{\prime}, and c^{\prime} denote the sines and cosines of two mixing angles, respectively. They can be expressed with the help of the coupling constants:

$$
\begin{array}{rlrl}
c^{\prime} & =g^{\prime} / g_{2}^{\prime} & s^{\prime}=g^{\prime} / g_{1}^{\prime} \\
c & =g / g_{2} & s=g / g_{1}
\end{array}
$$

with the usual SM couplings g, g^{\prime}, related to $g_{1}, g_{2}, g_{1}^{\prime}$ and g_{2}^{\prime} by

$$
\frac{1}{g^{2}}=\frac{1}{g_{1}^{2}}+\frac{1}{g_{2}^{2}}, \quad \frac{1}{{g^{\prime 2}}^{2}}=\frac{1}{{g_{1}^{\prime}}^{2}}+\frac{1}{{g_{2}^{\prime 2}}^{2}}
$$

Up to the order v^{2} / f^{2} the equations of motion give :

$$
\begin{aligned}
W^{\prime \pm \mu} & =g x_{W} W^{ \pm \mu}+\frac{x_{W}^{F}}{\sqrt{2}}\left(J^{ \pm \mu}-\left(1-c_{L}\right) J_{3}^{ \pm \mu}\right) \\
W^{\prime 3 \mu} & =y_{W}\left(g W^{3 \mu}+g^{\prime} B^{\mu}\right)+x_{W}^{F}\left(J^{0 \mu}-s_{L}^{2} \bar{t}_{L} \gamma^{\mu} t_{L}\right) \\
B^{\prime \mu} & =x_{B}\left(g W^{3 \mu}+g^{\prime} B^{\mu}\right)+x_{B}^{F}\left[\left(J_{e m}^{\mu}+J^{0 \mu}\right)-\frac{5 c^{\prime 2}}{2\left(3 c^{\prime 2}-2 s^{\prime 2}\right)} s_{L}^{2} \bar{t}_{L} \gamma^{\mu} t_{L}\right. \\
& \left.-\frac{1}{3 c^{\prime 2}-2 s^{\prime 2}} s_{R}^{2} \bar{t}_{R} \gamma^{\mu} t_{R}\right],
\end{aligned}
$$

where :

$$
\begin{aligned}
x_{W}^{F} & =-\frac{4 c^{3} s}{g f^{2}} \quad x_{B}^{F}=\frac{4 c^{\prime} s^{\prime}}{g^{\prime} f^{2}}\left(3 c^{\prime 2}-2 s^{\prime 2}\right) \\
x_{W} & =y_{W}=\frac{c s}{2 g}\left(c^{2}-s^{2}\right) \frac{v^{2}}{f^{2}} \\
x_{B} & =\frac{2 c^{\prime} s^{\prime}}{g^{\prime}}\left(c^{\prime 2}-s^{\prime 2}\right) \frac{v^{2}}{f^{2}} .
\end{aligned}
$$

In terms of the model parameters we obtain:

$$
\frac{G_{F}}{\sqrt{2}}=\frac{\alpha \pi\left(g^{2}+g^{\prime 2}\right)}{2 g^{2} g^{\prime 2} m_{Z}^{2}}\left(1-c^{2}\left(c^{2}-s^{2}\right) \frac{v^{2}}{f^{2}}+2 c^{4} \frac{v^{2}}{f^{2}}-\frac{5}{4}\left(c^{\prime 2}-s^{2}\right)^{2} \frac{v^{2}}{f^{2}}\right)
$$

and defining the Weinberg angle as

$$
\frac{G_{F}}{\sqrt{2}}=\frac{\alpha \pi}{2 s_{\theta}^{2} c_{\theta}^{2} m_{Z}^{2}} .
$$

we have

$$
\begin{aligned}
m_{Z}^{2} & =\left(g^{2}+g^{\prime 2}\right) \frac{v^{2}}{4}\left[1-\frac{v^{2}}{f^{2}}\left(\frac{1}{6}+\frac{\left(c^{2}-s^{2}\right)^{2}}{4}+\frac{5}{4}\left(c^{\prime 2}-s^{2}\right)\right)+8 \frac{v^{2}}{v^{2}}\right] \\
m_{W}^{2} & =\frac{g^{2} v^{2}}{4}\left[1-\frac{v^{2}}{f^{2}}\left(\frac{1}{6}+\frac{\left(c^{2}-s^{2}\right)^{2}}{4}\right)+4 \frac{v^{2}}{v^{2}}\right]
\end{aligned}
$$

The ϵ_{i} parameters are calculated using the effective low energy theory by integrating out the heavy states. To the order v^{2} / f^{2} we get:

$$
\begin{aligned}
& \epsilon_{1}=-\frac{v^{2}}{f^{2}}\left(\frac{5}{4}\left(c^{\prime 2}-s^{\prime 2}\right)^{2}+\frac{4}{5}\left(c^{\prime 2}-s^{\prime 2}\right)\left(3 c^{\prime 2}-2 s^{\prime 2}\right)+2 c^{4}\right)+4 \frac{v^{\prime 2}}{v^{2}} \\
& \epsilon_{2}=-2 c^{4} \frac{v^{2}}{f^{2}} \\
& \epsilon_{3}=-\frac{v^{2}}{f^{2}}\left(\frac{1}{2} c^{2}\left(c^{2}-s^{2}\right)+\frac{2}{5}\left(c^{\prime 2}-s^{\prime 2}\right)\left(3 c^{\prime 2}-2 s^{\prime 2}\right) \frac{c_{\theta}^{2}}{s_{\theta}^{2}}\right)
\end{aligned}
$$

where s, c, s^{\prime}, and c^{\prime} denote the sines and cosines of two mixing angles.

Figure 1: 90% and 50% CL exclusion contours in the plane $c-c^{\prime}$. The value of the triplet vev v^{\prime} is fixed to $v^{\prime 2} / v^{2}=v^{2} /\left(17 f^{2}\right)$. The allowed region lies inside the 90% and 50% bands, respectively. From hep-ph/0311038.

Figure 2: 90% and 50% CL exclusion contours in the plane $f-c$ for two values of the cosine of the other mixing angle c^{\prime} in the littlest Higgs model. The value of the triplet vev v^{\prime} is chosen using $v^{\prime} / v=v /(4 f)$. Other choices of v^{\prime} do not change much the above conclusions. The allowed region lies above the bands for the left figure and inside the bands for the right one (90\% CL the narrowest (in red) and 50\% CL the largest (in green)).

Figure 3: The region below the contours is excluded to 95% C.L. for c equal to 0.1 (solid), 0.5 (dotted), 0.7 (dashed), 0.99 (dot-dashed). The yellow region is excluded for any choice of c. From hep-ph/0305157 based on hep-ph/0211124, hep-ph/0303236 by Csáki et al.

Figure 4: The predicted value of $R_{b}^{L H}$ in the LH model as a function of the mixing parameter c^{\prime} for four values of the scale parameter f. From hepph/0401214 by Yue and Wang.

Little Higgs with custodial $S U(2)^{*}$

The model is based on a $S O(9) /[S O(5) \times S O(4)]$ coset space, with $S U(2)_{L} \times S U(2)_{R} \times S U(2) \times U(1)$ subgroup of $S O(9)$ gauged. The vev is

$$
\langle\Sigma\rangle=\left(\begin{array}{ccc}
0 & 0 & \mathbb{1}_{4} \\
0 & 1 & 0 \\
\mathbb{1}_{4} & 0 & 0
\end{array}\right)
$$

breaking the $S O(9)$ global symmetry down to an $S O(5) \times S O(4)$ subgroup. This coset space has $20=(36-10-6)$ light scalars. Of these 20 scalars, 6 will be eaten in the higgsing of the gauge groups down to $S U(2)_{W} \times U(1)_{Y}$. The remaining 14 scalars are : a single higgs doublet h, an electroweak singlet ϕ^{0}, and three triplets $\phi^{a b}$.

* S.Chang hep-ph/0306034

The equations of motion up to the order v^{2} / f^{2} are

$$
\begin{aligned}
W^{\prime 1,2} & =-\frac{v^{2} c s}{2 f^{2}}\left(c^{2}-s^{2}\right) W^{1,2}+\frac{s^{3} c}{f^{2} g} J^{1,2} \\
W^{\prime 3} & =-\frac{v^{2} c s}{2 f^{2}}\left(c^{2}-s^{2}\right)\left(W^{3}-\frac{g^{\prime}}{g} B\right)+\frac{s^{3} c}{f^{2} g} J^{3} \\
B^{\prime} & =\frac{v^{2} c^{\prime} s^{\prime}}{2 f^{2}}\left(c^{\prime 2}-s^{\prime 2}\right)\left(\frac{g}{g^{\prime}} W^{3}-B\right)+\frac{s^{\prime 3} c^{\prime}}{f^{2} g^{\prime}} J^{0} \\
W_{R}^{1,2} & =\frac{v^{2}}{2 f^{2}} W^{1,2}
\end{aligned}
$$

The expression for G_{F} in terms of the model parameters is

$$
\frac{G_{F}}{\sqrt{2}}=\frac{\alpha \pi\left(g^{2}+g^{\prime 2}\right)^{2}}{2 g^{2} g^{\prime 2}}\left(1+\frac{v^{2}}{f^{2}} \frac{s^{2}\left(c^{2}-s^{2}\right)-s^{4}}{2}\right)
$$

In this case the masses of Z - and W-bosons are given by

$$
m_{Z}^{2}=\left(g^{2}+g^{2}\right) \frac{v^{2}}{4}
$$

$$
m_{W}^{2}=\frac{g^{2} v^{2}}{4}\left(1+2 \frac{v^{\prime 2}}{v^{2}}\right)
$$

The corrections to the ϵ parameters to the order v^{2} / f^{2} are

$$
\begin{aligned}
\epsilon_{1} & =\frac{v^{2}}{4 f^{2}}\left[4 s^{\prime 2}\left(c^{\prime 2}-s^{\prime 2}\right)+2 c^{2} s^{2}-s^{4}\right]+2 \frac{v^{\prime 2}}{v^{2}} \\
\epsilon_{2} & =\frac{v^{2}}{4 c_{2 \theta} f^{2}}\left[4 s^{\prime 2}\left(c^{\prime 2}-s^{2}\right) c_{\theta}^{2} c_{2 \theta}+2 s^{2}\left(c^{2}-s^{2}\right)\left(c_{\theta}^{4}-3 c_{\theta}^{2} s_{\theta}^{2}+2 c_{\theta}^{2}-s_{\theta}^{2}\right)\right. \\
& \left.+s^{4}\left(c_{\theta}^{4}+s_{\theta}^{4}\right)\right] \\
\epsilon_{3} & =\frac{v^{2}}{2 s_{\theta}^{2} f^{2}}\left[s^{2}\left(c^{2}-s^{2}\right)\left(-c_{2 \theta}+2 s_{\theta}^{2} c_{\theta}^{2}\right)-s^{4} c_{\theta}^{2} s_{\theta}^{2}\right]
\end{aligned}
$$

Figure 5: 90% and 50% CL exclusion contours in the plane $c-c^{\prime}$ of the $S O(9) /[S O(5) \times S O(4)]$ model. The value of the triplet vev v^{\prime} is fixed to $v^{\prime 2} / v^{2}=v^{2} /\left(17 f^{2}\right)$. The allowed region lies inside the 90% and 50% bands, respectively.

Figure 6: 90% and 50% CL exclusion contours in the plane $f-c$ for two values of the cosine of the other mixing angle c^{\prime} in the $S O(9) /[S O(5) \times$ $S O(4)]$ model. The value of the triplet vev v^{\prime} is chosen using $v^{\prime} / v=v /(4 f)$. Other choices of v^{\prime} do not change much the above conclusions. The allowed region lies inside the bands (90% CL the narrowest (in red) and 50% CL the largest (in green)).

$g-2$ of the muon

The relevant one-loop Feynman diagrams are

Figure 7: Loop graphs contributing to the weak correction to Δg. a) and b) correspond to the exchange of a vector boson X while c) and d) are the Higgs sector contributions.

The difference between experiment and the standard model prediction for a_{μ} is

$$
\delta a_{\mu}=a_{\mu}^{e x p}-a_{\mu}^{\mathrm{SM}}=17(18) \times 10^{(-10)} .
$$

The numerical results within the littlest Higgs model are relatively insensitive to the choice of parameter values of the model. We obtain a difference from the standard model value of at most $\delta a_{\mu}=a_{\mu}^{\mathrm{LH}}-a_{\mu}^{\mathrm{SM}}$ of the order of 1×10^{-10}. The contributions of the additional heavy particles are thereby completely negligible and the dominant contributions arise from the corrections to the light Z and W couplings. Similar results are obtained in the custodial model.

Weak charge of cesium atoms

At low energy, parity violation in atoms is due to the electron-quark effective Lagrangian

$$
\mathcal{L}_{e f f}=\frac{G_{F}}{\sqrt{2}}\left(\bar{e} \gamma_{\mu} \gamma_{5} e\right)\left(C_{1 u} \bar{u} \gamma^{\mu} u+C_{1 d} \bar{d} \gamma^{\mu} d\right)
$$

The experimentally measured quantity is the so-called "weak charge" defined as

$$
Q_{W}=-2\left(C_{1 u}(2 Z+N)+C_{1 d}(Z+2 N)\right)
$$

where Z, N are the number of protons and neutrons of the atom, respectively.

Figure 8: Corrections to the weak charge of cesium atoms as a function of c and c^{\prime} in the littlest Higgs model.

Figure 9: Corrections to the weak charge of cesium atoms as a function of c and c^{\prime} in the little Higgs model with approximate custodial symmetry.

Conclusions

In the model without custodial symmetry a considerable fine tuning is necessary in order to satisfy the constraints imposed by LEP data. This problem is to a some extent avoided for the model with approximate custodial symmetry.

Low energy precision data does not change the above conclusions. For $g-2$ of the muon the corrections are too small. The weak charge does not allow for establishing new constraints either, even if the corrections are not negligible.

