•

Search for Neutral Higgs Bosons in CP Violating MSSM Scenarios at OPAL

Pamela Ferrari, Philip Bechtle

Workshop on CPV Higgs

05/14/2004

- 1. Introduction
- 2. The CPX benchmark set
- 3. The searches
- 4. The CPV MSSM exclusion

• Mass eigenstates and CP-eigenstates

Interesting features: Mixing and coupling suppression:

Can search for both ${\rm H_1}$ and ${\rm H_2}$ in Higgsstrahlung

CP-violation in the MSSM

• Trilinear Couplings A_u break SUSY and $\arg A_u$ introduces CP violation:

SUSY conserving, CP conserving SUSY breaking, CP breaking

- Theoretically: $\arg A_u \neq 0$ is the most general case
- $\arg A_u \neq 0$ can be motivated by baryogenesis
- Size of CP violating effects proportional to

$$\mathcal{M}_{SP}^2 \propto \frac{m_t^4}{v^2} \frac{\mathrm{Im}(\mu A_t)}{32\pi^2 m_{\mathrm{SUSY}}^2}$$

 \Rightarrow Benchmark: large $\arg A_t$, large μ , relatively small m_{SUSY}

aneta	=	1 – 40	ratio of Higgs v.e.v.
m_{H^+}	=	0 – 1 TeV	charged Higgs mass
μ	=	2 TeV	Higgs doublet mixing
$m_{ m SUSY}$	=	500 GeV	SUSY breaking scale $= m_{\tilde{q}}$
m_2	=	200 GeV	SU(2) gaugino mass matrix parameter
$ A_q $	=	1 TeV	strength of trilinear coupling
$\arg(A_q)$	=	90°	\Rightarrow CP-violation
$ m_{ ilde{ extbf{g}}} $	=	1 TeV	gluino mass
$\arg(m_{ ilde{ extbf{g}}})$	=	90°	\Rightarrow CP-violation

Parameters roughly fulfill electron and neutron EDM constraints proposed in Carena et al. hep-ph/0009212

CPH and FeynHiggs2.0

Two Scan Programs with complex phases available:

- CPH: (Carena, Pilaftsis, Wagner) Based on One-Loop Renormalization Group (RG) techniques
- FeynHiggs2.0: (Weiglein,Heinemeyer) Based on Two-Loop Feynman-Diagramatic approach
- \Rightarrow Masses and Rotation Matrix ROT

 $H_i^{\text{mass}} = \text{ROT}_{ij} \times H_j^{\text{CP}}$

can potentially be different

Differences between FH and CPH

• $\arg A = 90^{\circ}$:

: Useful Searches for the CPV case

Dedicated $H_2 \rightarrow H_1 H_1$ **Searches**

Pair production

- $H_2 \rightarrow H_1 H_1$ useful at $tan\beta \approx 10$
- One selection for both $b\bar{b}b\bar{b}$ and bbbbbbb signal
- $e^+e^- \rightarrow H_1H_2 \rightarrow H_1H_1H_1 \rightarrow b\bar{b}b\bar{b}(b\bar{b}) \qquad e^+e^- \rightarrow H_2Z^0 \rightarrow H_1H_1Z^0 \rightarrow b\bar{b}(b\bar{b})q\bar{q}$ One selection for both Higgsstrahlung $e^+e^- \rightarrow H_2Z^0 \rightarrow H_1H_1Z^0 \rightarrow b\bar{b}(b\bar{b})\nu\bar{\nu}$ $\sum_{\mathbf{H}_{2}} \sum_{\mathbf{b}} \sum_{\mathbf{e}^{-}} \sum_{\mathbf{H}_{1}} \sum_{\mathbf{H}$
 - 2 selections

Higgsstrahlung

CPC MSSM Limits

No Mixing

 $m_{
m h}$ -max

For comparison: Exclusion in the CPC MSSM

.

CPV MSSM Limits: CPX

Variation of $m_{\rm top}$

CPV MSSM Limits: Different Phases

CPX with larger phases

CPX with smaller phases

CPV MSSM Limits: Different Phases

CPX with different M_{SUSY}

Expectations for a LEP combination

Philip Bechtle Workshop on CPV Higgs 05/2004 - p.13/14

Summary

- For the first time, all 8 CPC benchmark scenarios and 9 different CPV scenarios are studied.
- MSSM limits:
 - CPC: $m_{
 m h} \approx m_{
 m A} > 85~{
 m GeV}$
 - CPC: $m_{\rm h}$ -max: $0.7 < \tan\beta < 1.9$ excluded for $m_t = 174.3$ GeV
 - Sector CPC+CPV: strong dependence of $an\beta$ limit on m_t
 - CPX: no absolute limit on $m_{\rm H_1}$
 - **CPX:** $\tan \beta > 2.8$
- LEP Combination is expected to cover the unexcluded region at intermediate $tan\beta$.
- Results are presented in CERN-PH-EP/2004-020

