V_{us} , K_{e3} decays, and radiative corrections: an update *

Geneva, 5 May 2004

Hannes Pichl Paul Scherrer Institut

*based on hep-ph/0401173 and previous papers, in particular with V. Cirigliano,

H. Neufeld, and M. Knecht

1 Introduction

- 2 Setting the scenery: amplitude, decay distribution, form factor
- **3** IR-safe decay distribution: a viable approach
- **4** Extraction of $|V_{us}|$ from K_{e3} data
- **5** Consistency check of K_{e3}^0 and K_{e3}^+ data
- 6 Summary

1 Introduction

Taking the PDG's values of the first-row CKM matrix entries,

 $|V_{ud}| = 0.9734 \pm 0.0008,$ $|V_{us}| = 0.2196 \pm 0.0026,$ $|V_{ub}| = 0.0036 \pm 0.0010,$

one finds a 2.2σ deviation from the first-row unitarity relation:

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1 = -0.0042 \pm 0.0019.$$

- $|V_{ud}|$ is remarkably precisely known
- $|V_{ub}|$ is of no importance at present precision
- $|V_{us}|$ comes from thirty-year-old data (and twenty-year-old theory)!

 \rightarrow series of high-precision $K_{\ell 3}$ experiments: E865, NA48, KLOE, ISTRA, ...

First result from E865 (Sher et al. '03) for the K_{e3}^+ decay leads to a branching ratio

$$BR(K_{e3(\gamma)}^+) = (5.13 \pm 0.02_{\text{stat}} \pm 0.09_{\text{sys}} \pm 0.04_{\text{norm}})\%.$$

In order to minimize systematic uncertainties, the channels $K_{\pi 2}^+$, $K_{\mu 3}^+$, and $K_{\pi 3}^+$ were used as normalization sample; PDG BRs were used for the normalization, thus the normalization error. This translates into the following decay width

$$\Gamma(K_{e3(\gamma)}^+) = (4.14 \pm 0.08) \times 10^6 s^{-1},$$

whereas the PDG quotes a decay rate that is $\sim 2.3 \sigma$ off:

$$\Gamma(K_{e3(\gamma)}^+) = (3.93 \pm 0.05) \times 10^6 s^{-1}$$

 $\rightarrow |V_{us}| \text{ would go up by about } 2-3\% \qquad \rightarrow \text{ inconsistency between old and new } K_{e3}^+ \text{ data}$ $\rightarrow \text{ no deviation from unitarity anymore} \qquad \rightarrow \text{ inconsistency between } K_{e3}^+ \text{ and } K_{e3}^0 \text{ data}$

2 Setting the scenery

Experiments are already **sensitive** to **subleading** effects in K_{e3} decays. These include **NNLO QCD** corrections and **isospin breaking** by quark masses and electromagnetism.

The calculations and numerical analyses presented here were undertaken within **chiral perturbation theory** with virtual photons and leptons. ChPT is the **effective low-energy** version of the **standard model** and works directly with pions and kaons as relevant degrees of freedom.

 $K(p_K) \to \pi(p_\pi) e^+(p_e) \nu_e(p_\nu)$

Without rad. corr. a K_{e3} decay is **sufficiently** parametrized by one form factor $f_{+}^{(0)}(t)$:

$$\mathcal{M} = C \frac{G_{\rm F}}{\sqrt{2}} V_{us}^* l^{\mu} f_+^{(0)}(t) (p_K + p_{\pi})_{\mu}$$

where the form factor denotes the vector current transition matrix element

$$f_{+}^{(0)}(t)(p_{K}+p_{\pi})_{\mu} = \langle \pi | V_{\mu}^{4} - i V_{\mu}^{5} | K \rangle.$$

We also have the weak leptonic current l^{μ} ,

$$l^{\mu} = \bar{u}(p_{\nu})\gamma^{\mu}(1-\gamma_5)v(p_e) ,$$

and the coefficient $C = \begin{cases} 1 & \text{for } K_{e3}^0 \\ 1/\sqrt{2} & \text{for } K_{e3}^+ \end{cases}$. $t = (p_K - p_\pi)^2$.

The spin-averaged decay distribution obtained from this reads

$$\rho^{(0)}(y,z) = \mathcal{N}A_1^{(0)}(y,z) |f_+^{(0)}(t)|^2$$

with these definitions

$$\mathcal{N} = C^2 \frac{G_F^2 |V_{us}|^2 M_K^5}{128\pi^3}, \quad z = \frac{2E_\pi}{M_K}, \quad y = \frac{2E_e}{M_K}, \quad t = M_K^2 (1 - z + r_\pi).$$

The simple kinematical density $A_1^{(0)}(y,z)$ is given by

$$A_1^{(0)}(y,z) = 4(z+y-1)(1-y) + r_e(4y+3z-3) - 4r_{\pi} + r_e(r_{\pi}-r_e),$$

where these squared mass ratios are used:

$$r_e = rac{m_e^2}{M_K^2}, \quad r_\pi = rac{m_\pi^2}{M_K^2}$$

How does the **presence of electromagnetism** affect the form factor? Virtual photon exchange introduces **2nd variable** and causes an **IR divergence**:

$$f_+^{(0)}(t) \to F_+(t, u, M_{\gamma})$$

with
$$u = (p_K - p_e)^2$$
 for K^+ , and $u = (p_\pi + p_e)^2$ for K^0 .

We chose to regularize the IR singularities with a fictitious photon mass M_{γ} .

To order α , the new form factor $F_+(t, u, M_\gamma)$ may be most conveniently written as product of **universal** LD corrections times a new **effective** form factor:

$$F_{+}(t,u,M_{\gamma}) = \left[1 + \frac{\alpha}{4\pi}\Gamma(u,m_e^2,m_{\pi}^2;M_{\gamma})\right] \times f_{+}(t)$$

Note that the second variable u has been shifted into the LD factor! Note also the close formal resemblance of the effective form factor to the original one!

For later use:

$$f_{+}(t) = f_{+}(0) \left[1 + \lambda_{+} \frac{t}{m_{\pi^{\pm}}^{2}} \right]$$

or even beyond the linear approximation (as soon as experiments become sensitive enough).

A few comments on what enters into the **effective** form factor $f_+(t)$:

- isospin breaking by the quark masses, e.g. $\pi^0 \eta$ mixing effects (up to $O((m_u m_d)p^2))$)
- isospin conserving contributions from SU(3) breaking (up to $O(p^6)$)
- both manifest themselves as QCD **loop** and **local** counterterm corrections
- isospin breaking by **local** effects of electromagnetism ($O(e^2p^2)$)

Don't forget that there are also **non-local** electromagnetic effects; these, however, are confined within the **LD correction** factor (and won't be shown here)!

Let's focus on what goes beyond the classical analysis of Gasser, Leutwyler, Roos: local $O(p^6)$ and leptonic corrections to $f_+(t)$, since this is where the theoretical uncertainties come from!

• the common **isospin conserving** corr. of order p^6 at zero momentum transfer:

$$\widetilde{f}_{+}^{K\pi}(0)\Big|_{p^{6}} = -8\left(\frac{M_{K}^{2}-M_{\pi}^{2}}{F_{\pi}^{2}}\right)^{2}\left[C_{12}^{r}(\mu)+C_{34}^{r}(\mu)\right]+\Delta_{\text{loops}}(\mu)\Big|_{t=0}$$

Post, Schilcher; Bijnens, Talavera '02, '03

• the local electromagnetic term for $K^0 \rightarrow \pi^- e^+ v_e$:

$$\widehat{f}_{+}^{K^{0}\pi^{-}} = 4\pi\alpha \left[2K_{12}^{r}(\mu) + \frac{4}{3}X_{1} - \frac{1}{2}\widetilde{X}_{6}^{r}(\mu) - \frac{1}{32\pi^{2}} \left(3 + \log\frac{m_{e}^{2}}{M_{\pi^{\pm}}^{2}} + 3\log\frac{M_{\pi^{\pm}}^{2}}{\mu^{2}} \right) \right]$$

• the local electromagnetic term for $K^+ \rightarrow \pi^0 e^+ v_e$:

$$\widehat{f}_{+}^{K^{+}\pi^{0}} = 4\pi\alpha \left[2K_{12}^{r}(\mu) - \frac{8}{3}X_{1} - \frac{1}{2}\widetilde{X}_{6}^{r}(\mu) - \frac{1}{32\pi^{2}} \left(3 + \log\frac{m_{e}^{2}}{M_{K^{\pm}}^{2}} + 3\log\frac{M_{K^{\pm}}^{2}}{\mu^{2}} \right) \right]$$

Cirigliano et al. '02

3 IR-safe decay distribution

 $F_+(t, u, M_{\gamma})$ being IR singular \rightarrow consider real photon emission

$$\rho(y,z) = \rho^{(0)}(y,z)\Big|_{F_+(t,u,M_\gamma)} + \rho^{\gamma}(y,z,M_\gamma),$$

where $\rho^{\gamma}(y, z, M_{\gamma})$ is obtained from the related radiative decay

 $K(p_K) \rightarrow \pi(p_\pi) e^+(p_e) \mathbf{v}_e(p_\nu) \gamma(p_\gamma).$

We (Ginsberg '67 - '70, cleaned from errors in Cirigliano et al. '02, '03, '04) propose to:

- accept all photon energies
- accept all angles between pion and positron
- e accept ONLY pion and positron energies within the original 3-body Dalitz plot
- \rightarrow inclusive rate obtained by integrating over the original domain

The situation is best explained by this plot:

Finally, the **IR-safe density** $\rho(y,z)$ is in close analogy to the original density without e.m.

$$\rho(y,z) = \mathcal{N} S_{EW}(m_{\rho}, m_Z) A_1(y,z) |f_+(t)|^2$$

The **new** kinematical density A_1 reads

$$A_1(y,z) = A_1^{(0)}(y,z) \left[1 + \Delta^{\text{IR}}(y,z) \right] + \Delta_1^{\text{IB}}(y,z).$$

 $\Delta^{IR}(y,z)$ contains IR divergences from LD effects in the form factor, and from the emission of soft real photons. The combination, however, is finite.

 $\Delta_1^{\text{IB}}(y,z)$ contains IR-finite corr. from $|\mathcal{M}_{\gamma}|^2$.

 $S_{EW} = 1.0232$ takes care of electroweak rad. corr. from M_Z up to the scale of the mass of the ρ . Then, we are hopefully in the domain where resonance exchange takes over. Marciano, Sirlin '93

4 Extraction of $|V_{us}|$ from K_{e3} data

$$|V_{us}| = \sqrt{\left[\frac{128\,\pi^3\,\Gamma(K_{e3(\gamma)})}{C^2\,G_F^2\,M_K^5\,S_{EW}(m_\rho,m_Z)\,I_K}\right]} \times \frac{1}{f_+^{K\pi}(0)}$$

$$I_{K} = \int_{\mathcal{D}} dy dz A_{1}(y, z) \left[1 + \lambda_{+} \frac{t}{m_{\pi^{\pm}}^{2}} \right]^{2} = a_{0} + a_{1} \lambda_{+} + a_{2} \lambda_{+}^{2}.$$

 \mathcal{D} ... dotted area in the (y, z) plane.

To extract $|V_{us}|$ from a measured (inclusive) rate, we need to provide

- the phase-space factor I_K (i.e., the a_i and the **slope**)
- the form factor at zero-momentum transfer.

With these coefficients of the K_{e3}^0 phase-space integral,

	a_0	a_1	a_2
$\alpha = 0$	0.09390	0.3245	0.4485
$\alpha \neq 0$	0.09358	0.3241	0.4475

and this slope parameter,

$$\lambda^{K^0\pi^-}_+ = 0.0291 \pm 0.0018 \; ,$$

we obtain

 $I_{K^0} = 0.10339 \pm 0.00063$, shifted by rad. corr. by -0.32 %

Similarly, with the coefficients of the K_{e3}^+ phase-space integral,

	a_0	a_1	a_2
$\alpha = 0$	0.09653	0.3337	0.4618
$\alpha \neq 0$	0.09533	0.3287	0.4535

and the corresponding slope parameter,

$$\lambda_{+}^{K^{+}\pi^{0}} = 0.0278 \pm 0.0019,$$

we obtain

 $I_{K^+} = 0.10482 \pm 0.00067$, shifted by rad. corr. by -1.27%

• Up to NLO, $f_+(0) = \tilde{f}_+(0) + \hat{f}_+$ in the K_{e3}^0 channel:

$$\underbrace{\tilde{f}_{+}(0)|_{p^{4}} = 0.97699 \pm 0.00002}_{\text{only meson masses and tiny } \epsilon^{(2)}} \text{ and } \underbrace{\hat{f}_{+} = 0.0046 \pm 0.0009}_{K_{12}^{r}, \text{ dim. anal. for } X_{1}, \widetilde{X}_{6}^{r}}$$

• Up to NLO, $f_+(0) = \widetilde{f}_+(0) + \widehat{f}_+$ in the K_{e3}^+ channel:

$$\underbrace{\widetilde{f}_{+}(0)|_{p^{4}} = 1.0002 \pm 0.0022}_{L_{7}, L_{8}^{r}, K_{3}^{r}, K_{4}^{r}, K_{5}^{r}, K_{6}^{r}, \varepsilon^{(2)}} \quad \text{and} \quad \underbrace{\widehat{f}_{+} = 0.0032 \pm 0.0016}_{K_{12}^{r}, \text{ dim. anal. for } X_{1}, \widetilde{X}_{6}^{r}}$$

The order p^6 contribution to $f_+^{K\pi}(0)$ necessitates a few more words:

$$\Delta_{\text{loops}}(M_{\rho})\Big|_{t=0} = 0.0146 \pm 0.0064$$
 Bijnens, Talavera '03

The local order p^6 correction is quite **controversial** at the moment.

Leutwyler and Roos estimated in '84 (in the language of overlapping wave functions) the local NNLO ($O(m_q^2)$) effects to be

 -0.016 ± 0.008 .

Bijnens and Talavera suggest to identify the local order p^6 correction with this number; however, there is the **question of scale** (see Cirigliano et al. '04):

$$-8\left(\frac{M_K^2 - M_\pi^2}{F_\pi^2}\right)^2 \left[C_{12}^r(M_\rho) + C_{34}^r(M_\rho)\right] = -0.016 \pm 0.008$$

Most recently, Bećirević et al. '04 presented a (quenched) lattice study of $K \to \pi$ form factors at zero momentum transfer. With

$$f_{+}^{K\pi}(0) = 1 + f_{+}^{K\pi}(0) \Big|_{p^4} + \Delta f_{+}^{K\pi},$$

they find for the 'complete' NNLO correction

$$\Delta f_{\pm}^{K\pi} = -0.017 \pm 0.005_{\text{stat}} \pm 0.007_{\text{sys}}$$
.

In the two scenarios, we find at zero-momentum transfer

$$\begin{aligned} & LO+NLO \ QCD & e.m. \ rad.corr. & NNLO \ QCD \\ f_{+}^{K^{0}\pi^{-}}(0) &= & \begin{bmatrix} 0.97699 \pm 0.00002 \end{bmatrix} + \begin{bmatrix} 0.0046 \pm 0.0008 \end{bmatrix} - \begin{bmatrix} 0.001 \pm 0.010 \end{bmatrix} = 0.981 \pm 0.010 \\ f_{+}^{K^{+}\pi^{0}}(0) &= & \begin{bmatrix} 1.00020 \pm 0.00220 \end{bmatrix} + \begin{bmatrix} 0.0032 \pm 0.0016 \end{bmatrix} - \begin{bmatrix} 0.001 \pm 0.010 \end{bmatrix} = 1.002 \pm 0.010 \\ f_{+}^{K^{0}\pi^{-}}(0) &= & \begin{bmatrix} 0.97699 \pm 0.00002 \end{bmatrix} + \begin{bmatrix} 0.0046 \pm 0.0008 \end{bmatrix} - \begin{bmatrix} 0.017 \pm 0.009 \end{bmatrix} = 0.965 \pm 0.009 \\ f_{+}^{K^{+}\pi^{0}}(0) &= & \begin{bmatrix} 1.00020 \pm 0.00220 \end{bmatrix} + \begin{bmatrix} 0.0032 \pm 0.0016 \end{bmatrix} - \begin{bmatrix} 0.017 \pm 0.009 \end{bmatrix} = 0.965 \pm 0.009 \\ 0.0020 \pm 0.00220 \end{bmatrix} + \begin{bmatrix} 0.0032 \pm 0.0016 \end{bmatrix} - \begin{bmatrix} 0.017 \pm 0.009 \end{bmatrix} = 0.986 \pm 0.010 \\ 0.0017 \pm 0.009 \end{bmatrix} = 0.986 \pm 0.010 \\ 0.0017 \pm 0.009 \end{bmatrix} = 0.986 \pm 0.010 \\ 0.0017 \pm 0.009 \end{bmatrix} = 0.986 \pm 0.010 \\ 0.0017 \pm 0.009 \end{bmatrix} = 0.986 \pm 0.010 \\ 0.0017 \pm 0.009 \end{bmatrix} = 0.986 \pm 0.010 \\ 0.0017 \pm 0.009 \end{bmatrix} = 0.986 \pm 0.010 \\ 0.0017 \pm 0.009 \end{bmatrix} = 0.986 \pm 0.010 \\ 0.0017 \pm 0.009 \end{bmatrix} = 0.986 \pm 0.010 \\ 0.0017 \pm 0.009 \end{bmatrix} = 0.986 \pm 0.010 \\ 0.0017 \pm 0.009 \end{bmatrix} = 0.986 \pm 0.010 \\ 0.0017 \pm 0.009 \end{bmatrix} = 0.986 \pm 0.010 \\ 0.0017 \pm 0.009 \\ 0.0017 \pm 0.009 \end{bmatrix} = 0.986 \pm 0.010 \\ 0.0017 \pm 0.009 \\ 0.0017 \pm 0.0017 \\ 0.0017 \pm 0.009 \\ 0.0017 \\ 0.0017 \\ 0.0017 \\ 0.0017 \\ 0.0017 \\ 0.0017 \\$$

Example: extraction of $|V_{us}|$ from the Brookhaven K_{e3}^+ rate.

With our values of $f_{+}^{K^{+}\pi^{0}}(0)$ and $I_{K^{+}}$, we arrive at

$$V_{us}| = 0.2238 \pm 0.0022 \pm 0.0007 \pm 0.0023$$

= 0.2238 \pm 0.0033,

$$|V_{us}| = 0.2274 \pm 0.0022 \pm 0.0008 \pm 0.0023$$

= 0.2274 \pm 0.0033.

These numbers are in good/excellent agreement with CKM unitarity

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1 = -0.0024 \pm 0.0021,$$

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1 = -0.0008 \pm 0.0021.$$

5 Consistency check of K_{e3}^0 and K_{e3}^+ data

$$r_{+0} := f_{+}^{K^{+}\pi^{0}}(0) \Big/ f_{+}^{K^{0}\pi^{-}}(0)$$

Theory tells us

$$r_{\pm 0}^{\text{th}} = 1 \pm \sqrt{3} \left(\epsilon^{(2)} \pm \epsilon_{\text{S}}^{(4)} \pm \epsilon_{\text{EM}}^{(4)} \right) - \frac{\alpha}{4\pi} \log \frac{M_{K^{\pm}}^2}{M_{\pi^{\pm}}^2} - 16\pi\alpha X_1$$

With simple dim. analysis for X_1 we find

$$1.017 \le r_{+0}^{\text{th}} \le 1.027$$

Experimentally

$$r_{+0}^{\exp} = \left(\frac{2\Gamma(K_{e3(\gamma)}^+)M_{K^0}^5 I_{K^0}}{\Gamma(K_{e3(\gamma)}^0)M_{K^+}^5 I_{K^+}}\right)^{1/2}$$

In order to arrive at a **meaningful** number, both in the exp. determination of the rate and in the calculation of the phase-space factor the same prescription regarding real photons must be used!

Assuming that this is the case, we find, for example, for the PDG fit of $\Gamma(K_{e3(\gamma)}^0)$ and for E865's $\Gamma(K_{e3(\gamma)}^+)$

 $r_{\pm 0}^{\exp} = 1.062 \pm 0.013.$

We may also use r_{+0}^{th} to normalize **independent** measurements of $|V_{us}| \cdot f_{+}^{K\pi}(0)$ to $f_{+}(0)^{K^{0}\pi^{-}}!$ If we, for the time being, forget about the likely real-photon-scheme dependence of older data, we can summarize our results about $|V_{us}|$ from K_{e3} decays in this plot:

 K_{a3}^+

 K_{2}^{0}

 $|V_{us}| \cdot f_+^{K^0\pi^-}(0)$

6 Summary

- ChPT with virtual γ , ℓ : one consistent low-energy framework to incorporate rad. corr.
- clear treatment of real rad. corr. established and cleaned from old errors
- **consistency** among exp. data **checkable** by comparison of decay rates with the theoretical band for the ratio $r_{\pm 0}^{th}$
- question of order p⁶ correction to the form factor still controversial, but there
 is a new lattice result; ChPT allows for a check of the lattice number once
 slope and curvature of form factors are measured
- present exp. status of $|V_{us}|$ is still quite confusing!
- new experiments are on the way to measure and hopefully clarify the status of $|V_{us}|$: NA48, KLOE