A re-analysis of radiative K_{e3}^0 decays

Jürg Gasser, <u>Bastian Kubis</u>¹
Universität Bern

Nello Paver
Università di Trieste & I.N.F.N. Trieste

Michela Verbeni Universidad de Granada

Kaon Mini Workshop, CERN, May 5, 2004

¹supported by RTN, BBW-Contract No. 01.0357, and EC-Contract HPRN-CT2002-00311 (EURIDICE).

$$K_L^0 \to \pi^- e^+ \nu_e \gamma \quad \left[K_{e3\gamma}^0 \right]$$

- Motivation: An experimental result
- Introduction: ChPT and Low's theorem
- Formalism: K_{e3} , $K_{e3\gamma}$ amplitudes
- ullet Observables: decay widths, the ratio R
- Electromagnetic corrections
- Structure dependent terms from differential rates
- Summary

Motivation

⇒ "... significantly lower than all published theoretical predictions."

KTeV Coll., Phys. Rev. D64 (01) 11204

⇒ new measurements planned (or done actually):

NA48 (see M.M. Velasco's talk), KLOE(@DA Φ NE)

note: " χ PT $\mathcal{O}(p^4)$ full" in this figure is not purely theoretical, but "processed" by KTeV!

Introduction

Chiral Perturbation Theory

- ullet expansion in small masses (M_π, M_K) and momenta
- equivalent to loop expansion; $K \to \pi \ell^+ \nu_\ell \gamma [K_{\ell 3\gamma}]$ up to one loop:

J. Bijnens, G. Ecker, J. Gasser, Nucl. Phys. B396 (1993) 81

Low's Theorem

• radiative processes $X \to Y \gamma$ involving charged particles are infrared divergent for photon momentum $q \to 0$:

$$T(X o Y \gamma) = \underbrace{\frac{C_{-1}}{q} + C_0}_{\text{inner bremsstrahlung (IB)}} + \underbrace{C_1 q + \dots}_{\text{structure dependent (SD)}}$$

Re-analysis $K_{e3\gamma}^0$

• Low's theorem: C_{-1} , C_0 given in terms of the non-radiative amplitude (and derivatives thereof):

$$C_{-1}, C_0 \propto T(X \to Y), \partial T(X \to Y)$$

F.E. Low, Phys. Rev. 110 (1958) 974

Strategy: ChPT + Low's Theorem

- chiral representation fulfils Low's theorem
- expect bremsstrahlung to dominate due to infrared singularity
 - \Rightarrow improve on chiral representation by using physical amplitudes / data for C_{-1} , C_0
- ChPT for structure dependent contributions

Formalism

- \bullet amplitude for K_{e3}^0 described in terms of single form factor $f_+(t)$, parametrisation $f_+(t)=f_+(0)\left\{1+\lambda_+\frac{t}{M_\pi^2}\right\}$ see H. Pichl's talk
- ullet amplitude for $K^0_{e3\gamma}$ $\left(K^0_L(p) o \pi^-(p')\,e^+(p_e)\,\nu_e(p_
 u)\,\gamma(q)\,\right)$:

$$T(\underline{K_{e3\gamma}^0}) \ = \ G_F \, e \, V_{us}^* \, \epsilon^\mu(q)^* \left[\, \left(V_{\mu\nu} - A_{\mu\nu} \right) \, \underbrace{\bar{u}(p_\nu) \, \gamma^\nu \, (1 - \gamma_5) \, v(p_e)}_{\text{leptonic weak current}} \right]$$

$$+ \int_{+}^{+} (t) \frac{(p+p')_{\nu}}{2p_{e}q} \, \bar{u}(p_{\nu}) \, \gamma^{\nu} \, (1-\gamma_{5}) \, (m_{e} - \not p_{e} - \not q) \, \gamma_{\mu} \, v(p_{e}) \, \bigg]$$

photon radiation from electron

ullet 5 independent variables, e.g. E_{γ} , E_{π} , E_{e} , $heta_{e\gamma}$, W^{2} $(W=p_{e}+p_{
u})$

Characterisation of $V_{\mu\nu},\ A_{\mu\nu}$:

- decomposition $V_{\mu\nu}=V_{\mu\nu}^{\rm IB}+V_{\mu\nu}^{\rm SD}$, $V_{\mu\nu}^{\rm IB}\simeq$ photon radiation from pion, depends only on f_+ H.W. Fearing, E. Fischbach, J. Smith, Phys. Rev. D2 (1970) 542
- Ward identities (→ gauge invariance):

$$q^{\mu} V_{\mu\nu}^{\mathsf{IB}} = f_{+}(t) (p + p')_{\nu} , \qquad q^{\mu} V_{\mu\nu}^{\mathsf{SD}} = q^{\mu} A_{\mu\nu} = 0$$

- ullet $V_{\mu\nu}^{\sf SD}$, $A_{\mu\nu}$ decomposed in terms of 8 functions V_{1-4} , A_{1-4} :
 - $\Rightarrow V_3$, A_3 suppressed by $m_e^2/M_K^2 pprox 10^{-6}$, not observable in $K_{e3\gamma}^0$
 - $\Rightarrow V_4$, A_4 suppressed by two orders in the chiral expansion
 - \Rightarrow (essentially) 4 functions $\overline{V_{1/2}}$, $A_{1/2}$ for SD contribution

Chiral one-loop prediction for structure dependent part:

$$V_1 = -rac{8}{F_\pi^2} L_9 + (\pi, K, \eta) - ext{loops}$$
 $V_2 = rac{4}{F_\pi^2} (L_9 + L_{10}) + (\pi, K, \eta) - ext{loops}$
 $A_1 = 0$
 $A_2 = -rac{1}{8\pi^2 F_\pi^2}$

- low-energy constants: $L_9 \leftrightarrow \langle r^2 \rangle_{\pi}^V$ or $\lambda_+, L_{10} \leftrightarrow (\pi \to e \nu \gamma)$
- \bullet axial form factors A_i given in terms of chiral anomaly

J. Wess, B. Zumino, Phys. Lett. B37 (1971) 95E. Witten, Nucl. Phys. B223 (1983) 422

Observables: decay widths

• for the non-radiative width:

$$\Gamma\left(K_{e3}^{0}\right) = \frac{M_K^5 G_F^2 |V_{us}|^2}{128\pi^3} f_{+}(0)^2 \times I$$

analogously for the radiative width:

$$\Gamma(K_{e3\gamma}^0) = \frac{\alpha M_K^5 G_F^2 |V_{us}|^2}{16\pi^7} f_+(0)^2 \times I^{\gamma}(E_{\gamma}^{\text{cut}}, \theta_{e\gamma}^{\text{cut}})$$

in the following: "standard cuts" $E_{\gamma}^{\rm cut}=30~{
m MeV}$, $\theta_{e\gamma}^{\rm cut}=20^{\circ}$

• I, I^{γ} depend only on λ_+ : $I^{(\gamma)}=a_0^{(\gamma)}+a_1^{(\gamma)}\,\lambda_++a_2^{(\gamma)}\,\lambda_+^2$,

$$rac{I^{(\gamma)}\left(\lambda_{+}=\lambda_{+}^{\mathsf{exp}}pprox0.03
ight)}{I^{(\gamma)}\left(\lambda_{+}=0
ight)}-1~\sim~0.1$$

The ratio R

• accessible in experiments:

$$R = \frac{\Gamma(K_{e3\gamma}^0, E_{\gamma} > E_{\gamma}^{\text{cut}}, \theta_{e\gamma} > \theta_{e\gamma}^{\text{cut}})}{\Gamma(K_{e3}^0)} = \frac{8\alpha}{\pi^4} \frac{I^{\gamma}}{I}$$

⇒ all sorts of constants cancel in the ratio

• R depends on λ_+ , but

$$\frac{R\left(\lambda_{+} = \lambda_{+}^{\mathsf{exp}} \approx 0.03\right)}{R\left(\lambda_{+} = 0\right)} - 1 = \mathcal{O}\left(10^{-4}\right)$$

 \Rightarrow the form factor dependence cancels completely in R!

• in ChPT: only visible one-loop effect from structure dependent contributions:

$$rac{R\left(\mathsf{IB} + \mathsf{SD}
ight)}{R\left(\mathsf{IB}
ight)} - 1 \, pprox \, -0.01$$

⇒ inner bremsstrahlung completely dominant!

we have a tree prediction that is accurate at the 1%-level!

assume 30% uncertainty on structure dependent terms
 ⇒ our estimate Low + ChPT (preliminary):

$$R = (0.952 \pm 0.004) \times 10^{-2}$$

Electromagnetic corrections

Hadronic prediction of $\sim 1\%$ accuracy – radiative corrections?

$$\mathcal{R} = \frac{\Gamma_{\rm incl}(K_{e3\gamma}^0, E_{\gamma} > E_{\gamma}^{\rm cut}, \theta_{e\gamma} > \theta_{e\gamma}^{\rm cut})}{\Gamma_{\rm incl}(K_{e3}^0)}$$

- \bullet denominator: see H. Pichl's talk, net effect: I changed by 0.3%
- numerator: can we expect same net effect for $K_{e3\gamma}^0$? (only bremsstrahlung important \Rightarrow given by $K_{e3}^0 \Rightarrow$ cancellation??)
- ⇒ too simple: what is Ward identity in the presence of photons??
- \Rightarrow assume $\pm 1.5\%$ \Rightarrow dominant uncertainty!

Comparison experiment/theory:

^{*} NA48 data point according to M.M. Velasco's talk, added after the workshop

Structure dependent terms

- Idea: access information independent on branching ratios by studying (unnormalised) differential rates $\Rightarrow V_{1/2}$, $A_{1/2}$
- $d\Gamma/dE_{\gamma}$ most promising due to special role of E_{γ} in IB vs. SD
- KTeV: study $d\Gamma/dE_{\gamma}$ with
 - 1. real and constant structure functions
 - 2. two SD terms, neglect other two in "soft kaon approximation"
- ⇒ ChPT: first assumption reasonable (imaginary part + momentum dependence suppressed to two-loop)
- ⇒ check validity of the second assumption
- ⇒ study also other distributions

Structure dependent contributions to $d\Gamma/dE_{\gamma}$

 $\Rightarrow d\Gamma/dE_{\gamma}$ is essentially sensitive to *one* combination

$$C' = 0.9 \times V_1 + 0.4 \times V_2 + 0.4 \times A_1$$

= $0.9 \times (V_1 - V_2) + \underbrace{1.3 \times V_2}_{\text{neglected}} + 0.4 \times (A_1 + A_2) - \underbrace{0.4 \times A_2}_{\text{neglected}}$

⇒ "soft kaon" not a good approximation!

Re-analysis
$$K_{e3\gamma}^0$$

Compare KTeV result to ChPT prediction:

- KTeV: $C' = -2.5^{+1.5}_{-1.0} \pm 1.5$
- ChPT: $C' = -1.9 \pm 0.7$ (preliminary)
- \Rightarrow excellent numerical agreement within 1- σ error
- \Rightarrow interpretation of C' in terms of structure functions different
- ⇒ serious constraints on SD terms feasible!

Other distributions: $d\Gamma/dE_{\pi}$

 \Rightarrow potentially sensitive to V_2 :

structure	E_π peak
IB	96 MeV
V_1	74 MeV
V_2	34 MeV
A_1	81 MeV

And the anomaly? $d\Gamma/d\cos\theta_{e\gamma}$

Summary (1)

Combination of Low's theorem and ChPT allows for an extremely precise prediction of $R=\Gamma(K_{e3\gamma}^0)/\Gamma(K_{e3}^0)=(0.952\pm0.004)\times10^{-2}$

- ullet R completely insensitive to details of K_{e3}^0 form factor
- structure dependent terms very small
- ullet constants like G_F or $|V_{us}|$ cancel

Precision limited by radiative corrections:

$$\mathcal{R} = \Gamma(K_{e3\gamma}^0)/\Gamma(K_{e3}^0) = (0.950 \pm 0.004_{\rm hadr} \pm 0.015_{\rm em}) \times 10^{-2}$$

vs.
$$\mathcal{R} = (0.908 \pm 0.008_{\text{stat}} \stackrel{+}{_{-}} \stackrel{0.013}{_{0.012}}_{\text{syst}}) \times 10^{-2}$$
 (KTeV) $\mathcal{R} = (0.964 \pm 0.008_{\text{stat}} \pm 0.012_{\text{syst}}) \times 10^{-2}$ (NA48)

Re-analysis
$$K_{e3\gamma}^0$$

Summary (2)

Experimental extraction of structure dependent terms from $d\Gamma/dE_{\gamma}$ shown to be feasible by KTeV collaboration:

$$C' = -2.5^{\,+1.5}_{\,-1.0\,\,\mathrm{stat}} \pm 1.5_{\mathrm{syst}} \,\,\, (\mathrm{KTeV}) \quad \mathrm{vs.} \quad C' = -1.9 \pm 0.7_{p^6} \,\,\, (\mathrm{ChPT})$$

Tentative ideas for experimentalists:

- extract V_2 from $d\Gamma/dE_{\pi}$ in order to disentangle V_1 and V_2 in C'
- ullet chiral anomaly in A_2 at most accessible in $d\Gamma/d\cos\theta_{e\gamma}$

Obvious idea for theorists:

• perform same study for other $K_{\ell 3\gamma}$ channels!