CPV in the kaon system: ε'/ε vs $K \rightarrow 3\pi$ **I. Scimemi** ECM-U. Barcelona

 $K \rightarrow 3\pi$ in collaboration with E. Gamiz, J. Prades (U. Granada), JHEP 0310:042,2003

Contents of the talk

A brief introduction to $|\Delta S| = 1$ processes

Contents of the talk

A brief introduction to $|\Delta S| = 1$ processes $\sim \varepsilon'/\varepsilon$: status and problems

Contents of the talk

A brief introduction to |ΔS| = 1 processes
ε'/ε: status and problems
Why to study CPV in K → 3π
Newest results on K → 3π
Conclusions

En. scale Fields Eff. Theory

$$\mathcal{L}_{eff}^{\Delta S=1} = -\frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* \sum_i C_i(\mu) Q_i(\mu)$$

CPV in the kaon system: ε'/ε vs $K \to 3\pi$ – p.3/2

CPV in the kaon system: ε'/ε vs $K \to 3\pi$ – p.3/2

ChPT for $|\Delta S| = 1$

The e.m. and octet part at lowest order for $|\Delta S| = 1$

 $\mathcal{L}^{(2)} = C F_0^4 \left\{ e^2 F_0^2 G_E \left(u^{\dagger} Q u \right) + G_8 \left(u_{\mu} u^{\mu} \right) + G_8' \left(\chi_+ \right) + G_{27}(...) \right\}_{32}$

At order p^4 other operators appear. The octet combinations are

$$\begin{array}{c|c} \tilde{K}_{1} & G_{8} \left(N_{5}^{r}-2N_{7}^{r}+2N_{8}^{r}+N_{9}^{r}\right)+G_{27} \left(-\frac{1}{2}D_{6}^{r}\right) \\ \tilde{K}_{2} & G_{8} \left(N_{1}^{r}+N_{2}^{r}\right)+G_{27} \left(\frac{1}{3}D_{26}^{r}-\frac{4}{3}D_{28}^{r}\right) \\ \tilde{K}_{3} & G_{8} \left(N_{3}^{r}\right)+G_{27} \left(\frac{2}{3}D_{27}^{r}+\frac{2}{3}D_{28}^{r}\right) \\ \tilde{K}_{8} & G_{8} \left(2N_{5}^{r}+4N_{7}^{r}+N_{8}^{r}-2N_{10}^{r}-4N_{11}^{r}-2N_{12}^{r}\right)-\frac{2}{3}G_{27} \left(D_{1}^{r}-D_{6}^{r}\right) \\ \tilde{K}_{9} & G_{8} \left(N_{5}^{r}+N_{8}^{r}+N_{9}^{r}\right)+G_{27} \left(-\frac{1}{6}D_{6}^{r}\right) \end{array}$$

Bijnens, Dhonte, Persson, N.P.B648:317,2003.

CPV in the kaon system: ε'/ε vs $K \to 3\pi$ – p.4/2

ε'/ε : status and unsolved problems

$$\operatorname{\mathsf{Re}} \ \frac{\varepsilon'}{\varepsilon} = \frac{\omega}{\sqrt{2} \ |\varepsilon|} \ \left[\frac{\operatorname{\mathsf{Im}} A_2}{\operatorname{\mathsf{Re}} A_2} - (1 - \Omega_{\operatorname{eff}}) \frac{\operatorname{\mathsf{Im}} A_0}{\operatorname{\mathsf{Re}} A_0} \right]$$

Experimental Status (M. Sozzi):

Re
$$\varepsilon' / \varepsilon = (1.63 \pm 0.23) \cdot 10^{-3}$$
 W.A.

Theoretical Status:

★ General agreement on the OPE part (Munich, Rome).
 ★ Matrix elements and input parameters
 ★ FSI

CPV in the kaon system: arepsilon'/arepsilon vs $K o 3\pi$ – p.5/2

Hadronic Matrix Elements

- Lattice calculations: CP-PACS, SPQCDR, UKQCD
- ☆ QCD Sum Rules: Pich, de Rafael
- \therefore Large N_c : within different treatments of the low-energy physics
 - Vacuum Sat. and improvements: Bardeen et al.; Hambye et al.
 - Nambu–Jona-Lasinio like models: Bijnens and Prades
 - Minimal Hadronic Approximation: Knecht et al.
 - Ladder Resummation Approximation: Bijnens,Gámiz,Lipartia,Prades

Dispersive Methods: Cirigliano et al.;Narison; Bijnens et al.

LO Chiral couplings

Authors, method	$\operatorname{Im} G_8/\operatorname{Im} au$	e^2 lm $G_E/$ lm $ au$
Large N_c	1.9	-2.9
Bijnens, Gamiz, Lipartia, Prades	4.4 ± 2.2	
Hambye, Peris, de Rafael	~ 6	$-(6.7 \pm 2.0)$
Bijnens, Gamiz, Prades; Narison;		
Cirigliano, Donoghue, Golowich,		
Maltman(τ decays)		$-(4.0 \pm 0.9)$
Lattice		$-(3.2 \pm 0.3)$

Matrix elements and input parameters: news and old problems

- Y $\Omega_{1B}^{mn} = 0.163 \pm 0.045$ (Ecker, Neufeld, Pich) updated with e.m. corrections (Cirigliano, Ecker, Neufeld, Pich) $\Omega_{\text{eff}} = 0.06 \pm 0.077$
- Y Im $\tau \equiv -\text{Im} (V_{td}V_{ts}^*/(V_{ud}V_{us}^*)) \sim -(6.05 \pm 0.50)10^{-4}$. Note: if ε_{th} is used in the formula for ε'/ε the dependence of the final result on Im τ is almost canceled. In this case the final result depends on the value of B_K (This is better in Large N_c).

Y Strange quark mass. A big source of error in Large N_c . $m_s(2 \text{GeV}) \sim (110 \pm 25) \text{MeV}$.↔ This dependence traded with quark condensates via GMOR relation.

NLO chiral couplings, \tilde{K}_i ?

Not much is known. Using factorization one needs the counterterms from strong chiral Lagrangian of order $p^6...$ A naive assumption

$$\frac{\operatorname{Im} \widetilde{K}_i}{\operatorname{Re} \widetilde{K}_i} \simeq \frac{\operatorname{Im} G_8}{\operatorname{Re} G_8} \simeq \frac{\operatorname{Im} G_8'}{\operatorname{Re} G_8'} \simeq (0.9 \pm 0.3) \operatorname{Im} \tau \,,$$

		Re $\widetilde{K}_i(M_ ho)$	${\sf Im}\ \widetilde{K}_i(M_\rho)$
8-et	$\widetilde{K}_2(M_{ ho})$	0.35 ± 0.02	$[0.31\pm0.11]\mathrm{Im}\; au$
8-et	$\widetilde{K}_3(M_{ ho})$	0.03 ± 0.01	$[0.023\pm0.011]\mathrm{Im}\; au$
27-et	$\widetilde{K}_5(M_ ho)$	$-(0.02 \pm 0.01)$	0
27-et	$\widetilde{K}_6(M_{ ho})$	$-(0.08 \pm 0.05)$	0
27-et	$\widetilde{K}_7(M_{ ho})$	0.06 ± 0.02	0

Re $\widetilde{K}_i(M_{\rho})$ from Bijnens, Dhonte, Persson

Final State interaction

- Solution FSI have been shown to be an important ingredient for ε'/ε (Pallante, Pich, S.).
- ⇒ The degeneracy of I = 0 and I = 2 amplitude is removed by FSI and Ω_{IB} .
- PPS have included FSI using an Omnés dispersion relation.

Some conclusion from ε'/ε and $K \to 3\pi$

- FSI and IB effects are getting under control and/or are better checked
- The main uncertainty of ε'/ε come from the determination of the imaginary part of the couplings of the chiral Lagrangian.
- ♦ The same chiral Lagrangian describes CPV also in $K \rightarrow 3\pi$. Recent proposal by NA48 (CERN), KLOE(Frascati), OKA (Protvino). New precision 10^{-4} (Improvement of 2 orders of magnitude). Why not to check better?
- \Rightarrow Conflicting results in the literature ($10^{-3} 10^{-6}$)

Some History of $K \rightarrow 3\pi$

CP conserving observables

J. Kambor, J. Missimer, D. Wyler, NP **B 346** ('90) 17, PL **B 261** ('91) 496.

J. Kambor et al., PRL 68 ('92) 1818.

G. Esposito-Farese, ZP C 50 ('91) 255.

G. Ecker, J. Kambor, D. Wyler NP B 394 ('93) 101.

J. Bijnens, P. Dhonte, F. Persson, NP B 648:317,2003.

Some History of $K \rightarrow 3\pi$

CP conserving observables

J. Kambor, J. Missimer, D. Wyler, NP **B 346** ('90) 17, PL **B 261** ('91) 496.

J. Kambor et al., PRL 68 ('92) 1818.

G. Esposito-Farese, ZP C 50 ('91) 255.

G. Ecker, J. Kambor, D. Wyler NP **B 394** ('93) 101.

J. Bijnens, P. Dhonte, F. Persson, NP B 648:317,2003.

CPV observables

B. Grinstein, S.-J Rey, M. Wise, PR D 33 ('86) 1485.

A. Bel'kov et al., IJMP A 7 ('92) 4757, PL B 300('93) 283.

G. Isidori et al., NP B 381 ('92) 522.

G. D'Ambrosio et al., PR **D 50** ('94) 5767., ERR-ibid.**D 51** ('95) 3975.

E. Shabalin, NP B 409 ('93) 87, PAN 61 ('98) 1372.

The Target

We want to provide a complete (8-et, 27-et, ew-octet) one–loop (NLO)evaluation of chiral correction for both CP conserving and CPV observables in $K \rightarrow 3\Pi$.

$$\begin{array}{ccccc} K^+ & \to & \pi^+ \pi^+ \pi^- & K_{1,2} \to \pi^+ \pi^- \pi^0 \\ K^+ & \to & \pi^0 \pi^0 \pi^+ & K_{1,2} \to \pi^0 \pi^0 \pi^0 \end{array}$$

Observables: Decay rates, Γ , and

 $\frac{|A_{K^+ \to 3\pi}(s_1, s_2, s_3)|^2}{|A_{K^+ \to 3\pi}(s_0, s_0, s_0)|^2} = 1 + g y + h y^2 + k x^2 + \mathcal{O}(yx^2, y^3)$

 $x \equiv \frac{s_1 - s_2}{m_{\pi^+}^2} \quad \& \quad y \equiv \frac{s_3 - s_0}{m_{\pi^+}^2} \quad \text{and} \quad s_i \equiv (k - p_i)^2, \quad 3s_0 \equiv m_K^2 + \sum_{i=1,2,3} m_{\pi^{(i)}}^2.$

CPV in the kaon system: ε'/ε vs $K \to 3\pi$ – p.13/2

Status of 1-loop in ChPT for $K \rightarrow 3\pi$

CP conserving part

The 8-et and 27-et done also by Bijnens, Dhonte, Persson.
 We fully agree. They provide also a fit of the Re K
_i. We checked Γ, g, h, k
 Re G₈ = 6.8 ± 0.6 and Re G₂₇ = 0.48 ± 0.06

CP violating part

- We included e.m. penguin contribution (all decays, orders e²p⁰ and e²p²) and 2-loop imaginary part of the amplitudes, say FSI, using the optical theorem (for charged decays only, neutral decays are in progress; Bijnens et al. are checking this part)
- All results are analytical

A check on the CP conserving part

$K^{\pm} \to \pi^{\pm} \pi^{\pm} \pi^{\mp}$	g_C	$\Gamma_C(10^{-18} \text{ GeV})$
LO	-0.16 ± 0.02	1.2 ± 0.2
NLO, $\widetilde{K}_i(M_{\rho})$ from BDP	-0.22 ± 0.02	3.1 ± 0.6
NLO, $\widetilde{K}_i(M_{ ho}) = 0$	-0.28 ± 0.03	1.3 ± 0.4
PDG02	-0.2154 ± 0.0035	2.97 ± 0.02
$K^{\pm} \to \pi^0 \pi^0 \pi^{\pm}$	g_N	$\Gamma_N(10^{-18} \text{ GeV})$
LO	0.55 ± 0.04	0.37 ± 0.07
NLO, $\widetilde{K}_i(M_{\rho})$ from BDP	0.61 ± 0.05	0.95 ± 0.20
NLO, $\widetilde{K}_i(M_{\rho}) = 0$	0.80 ± 0.05	0.41 ± 0.12
PDG02	0.652 ± 0.031	0.92 ± 0.02
ISTRA+	0.627 ± 0.011	— — — — — — — — — — — — — — — — — — —
KLOE	0.585 ± 0.016	0.95 ± 0.01

Counterterms relevant for Γ_i, h_i, k_i

CP violating asymmetries

Definitions: Slopes

$$\Delta g_C \equiv \frac{g[K^+ \to \pi^+ \pi^+ \pi^-] - g[K^- \to \pi^- \pi^- \pi^+]}{g[K^+ \to \pi^+ \pi^+ \pi^-] + g[K^- \to \pi^- \pi^- \pi^+]}$$

and $\Delta g_N \equiv \frac{g[K^+ \to \pi^0 \pi^0 \pi^+] - g[K^- \to \pi^0 \pi^0 \pi^-]}{g[K^+ \to \pi^0 \pi^0 \pi^+] + g[K^- \to \pi^0 \pi^0 \pi^-]}.$

and the same for Decay Rates with $g \rightarrow \Gamma$.

LO Results

 $\Delta g_C^{\text{LO}} \simeq [1.16 \,\text{Im} \, G_8 - 0.12 \,\text{Im} \, (e^2 G_E)] \times 10^{-2} ,$ $\Delta g_N^{\text{LO}} \simeq - [0.52 \,\text{Im} \, G_8 + 0.063 \,\text{Im} \, (e^2 G_E)] \times 10^{-2} .$

NLO results: graphics for FSI

For Im $A \sim \mathcal{O}(p^4)$ (LO) one needs W, S~ $\mathcal{O}(p^2)$. For Im $A \sim \mathcal{O}(p^6)$ (NLO) one needs W~ $\mathcal{O}(p^2)$ and S~ $\mathcal{O}(p^4)$ and viceversa.

NLO results: FSI in the asymmetries

$$|A(K^{\pm} \to 3\pi)|^2 = A_0^{\pm} + y A_y^{\pm} + \mathcal{O}(x, y^2)$$
$$\Delta g = \frac{A_y^{\pm} A_0^{-} - A_0^{\pm} A_y^{-}}{A_y^{\pm} A_0^{-} + A_0^{\pm} A_y^{-}}.$$

- × The sum $A_y^+ A_0^- + A_0^+ A_y^-$ does NOT contain FSI (i.e. $\mathcal{O}(p^6)$) at NLO (they would be part of the NNLO)
- ★ The difference $A_y^+ A_0^- A_0^+ A_y^- \sim \text{Im } A$: to have it at NLO we must take into account FSI phases \rightarrow FSI at NLO only in imaginary parts (in other words: Re $A \sim \mathcal{O}(p^2) + \mathcal{O}(p^4) + ...$ while Im $A \sim \mathcal{O}(p^4) + \mathcal{O}(p^6) + ...)$
- X The calculation of the imaginary part can be done in ChPT using the optical theorem

Results for the asymmetries

NLO

 $\frac{\Delta g_C^{\rm NLO}}{10^{-2}} \simeq 0.66 \,\mathrm{Im}G_8 + 4.33 \,\mathrm{Im}\widetilde{K}_2 - 18.11 \,\mathrm{Im}\widetilde{K}_3 - 0.07 \,\mathrm{Im}(e^2 G_E)\,,$

CPV in the kaon system: arepsilon'/arepsilon vs $K o 3\pi$ – p.20/2

ε'/ε vs Δg_C : Status of ε'/ε

CPV in the kaon system: ε'/ε vs $K \to 3\pi$ – p.21/2

 $\Delta g_C \sim 3.5 \ 10^{-5}$

CPV in the kaon system: arepsilon'/arepsilon vs $K o 3\pi$ – p.21/2

$arepsilon' / arepsilon \, {f vs} \, \Delta g_C$:

Summary

- $\Delta g_C > 5 \ 10^{-5} \rightarrow \text{New Physics.}$
- $3 \ 10^{-5} < \Delta g_C < 5 \ 10^{-5} \rightarrow$ Compatible with high values of Im G_8 but in bad agreement with ε'/ε .
- $\Delta g_C \sim 10^{-5} \rightarrow$ Perfectly compatible with SM.
- The experimental errors should be $\sim 10^{-5}$.

Δg_N and the counterterms

 $\mathrm{Im}\tilde{K}_i = k\mathrm{Re}\tilde{K}_i \frac{\mathrm{Im}\mathrm{G}_8}{\mathrm{Re}\mathrm{G}_8}$

CPV in the kaon system: ε'/ε vs $K \to 3\pi$ – p.22/2

Comments on the charged $K \rightarrow 3\pi$ as.

← Δg_C is dominated by Im G_8 . Ch-NLO on Δg_C give effects of about 20-30%. The final error is due mainly to Im G_8 .

 \rightarrow consistency with ε'/ε

• Δg_N and $\Delta \Gamma_{C,N}$ are dominated by $\mathcal{O}(p^4)$ counterterms, \tilde{K}_i

 \rightarrow New important information on Im K_i

← The new experimental limit of 10^{-4} will put ChPT under stringent test and so check eventual NP effects. SM prefers values of $\Delta g_C < 0.4 \times 10^{-4}$. For consistency with $\varepsilon'/\varepsilon \Delta g_C \simeq 10^{-5}$.

SUSY

Question: Can NP enhance $\Delta g_{C,N}$ respecting all constraints? In generic SUSY models the gluonic penguin operator (D'Ambrosio,Isidori, Martinelli):

$$\mathcal{H} = C_g^+ O g^+ + C_g^- O g^-$$

$$O g^{\pm} = \frac{g}{16\pi^2} \left(\bar{s}_L \sigma_{\mu\nu} G^{\mu\nu} d_R \pm \bar{s}_R \sigma_{\mu\nu} G^{\mu\nu} d_L \right)$$

$$C_g^{\pm} = \frac{\pi \alpha_s(m_{\tilde{g}})}{m_{\tilde{g}}} \left(\delta_{LR21}^D \pm \delta_{LR12}^{D*} \right) G_0(x_{gq})$$

SUSY

Question: Can NP enhance $\Delta g_{C,N}$ respecting all constraints? In generic SUSY models the gluonic penguin operator (D'Ambrosio,Isidori, Martinelli):

They find Δg_C can be as big as 10^{-4} in a small region of the parameter space.

However also big uncertainties due to the hadronization of the operator.

Conclusions

The main problem for a good estimate of ε'/ε are still hadronic matrix elements. It would be extremely helpful to measure other CP-violating channels in hadronic kaon decays. $K \to 3\pi$ offers several chances.

We have provided the first NLO in ChPT estimate of CP-violating asymmetries in charged $K \rightarrow 3\pi$. The results for the 8-et and 27-et part agree with BDP. We have included e.w. penguin contribution (up to $O(e^2p^2)$) and imaginary part of the amplitudes up to $O(p^6)$ (FSI). Neutral channels are in progress.

Forthcoming experiments on hadronic kaon decays have still the possibility to give many surprises.