Status and Prospects of Rare K^{\pm} and K_L Decays from NA48

Rainer Wanke

Institut für Physik, Universität Mainz

Kaon Mini Workshop

CERN, May 5, 2004

Introduction

 K^{\pm} Decays: A Look into the Future

NA48/2 Data taking 2003 (+ 2004): World largest multi-purpose sample of K^{\pm} decays.

K_L Decays: Wrapping up the Past

NA48 Data taking up to 2001: Huge K_L sample, several publi-

cations, still some left-overs.

Aim of this talk:

- Introduce analyses which are expected to be finished soon.
- Estimates of sample sizes, backgrounds, and expected uncertainties.
- But: Mostly no results yet.

Overview

• K^{\pm} Decays:

- $K^{\pm} \to \pi^{\pm} \pi^{\mp} e^{\pm} \nu(\bar{\nu})$ (K_{e4}^{+}) branching ratio and form factors
- $K^{\pm} \rightarrow \pi^{\pm} e^+ e^-$ and $K^{\pm} \rightarrow \pi^{\pm} \mu^+ \mu^-$ decays

First look into $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$

■ K₁ Decays:

- $K_{L} \rightarrow \pi^{\pm} \pi^{0} e^{\mp} \nu_{e}$ (K_{e4}^{0}) branching ratio and form factors
- Form factor in $K_{\rm L} \rightarrow e^+ e^- \gamma$
- Measurement of $K_1 \rightarrow e^+e^-e^+e^-$

Not covered here:

CP violation in $K^{\pm} \rightarrow \pi^{\pm} \pi^{\pm} \pi^{\mp} \implies$ Spasimir Balev

 \blacksquare K_S and neutral hyperon decays \implies Cristina Lazzeroni

Semileptonic decays $K_{l3}, K_{l3\gamma} \implies$ Mayda Velasco

NA48 Detector

Rare K^{\pm} Decays

NA48/2 *K*[±] **Data Taking in 2003**

NA48/2 experiment in 2003:

- **High intensity data taking with simultaneous** K^+ and K^- beams.
- New beam spectrometer (Micromesh gas chambers) $\implies K^{\pm}$ momentum resolution $\sim 1\%$
- 50 days of data taking: $\sim 10^{11} K^{\pm}$ decays in decay volume.

Trigger:

- All 3-track events (~ 98% efficient)
- 1-track events
 with μ -veto and $(p_K p_\pi)^2 \gg m_{\pi^0}^2$

to reject $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$.

NA48/2 *K*[±] **Data Taking in 2003**

Total data taking period 2003: \sim 50 days.

Data presented here: Last month of data taking

(so-called Super Samples 1,2,3).

 \implies Stable running conditions during this period.

All 2003 data almost twice as much.

 \implies Still useful for Rare Decay analyses.

Physics interest:

- Low energy $\pi\pi$ scattering unambiguously predicted from Chiral Perturbation Theory first principles.
- s-wave isospin zero $\pi\pi$ scattering length a_0^0 can be determined from form factors in K_{e4}^+ decays.
 - \implies Predicted to $a_0^0 = 0.220 \pm 0.005$ in ChPT. (Colangelo, Gasser, Leutwyler, 2001)
 - \implies Direct and firm test of Chiral Perturbation Theory.

Previous measurements:

- Geneva-Saclay (1977): 30 000 events
- Brookhaven E865 (2001): 400 000 events

 $\implies a_0^0 = 0.216 \pm 0.013.$

Invariant kaon mass Ke4 hypothesis

Cabibbo-Maksymowicz variables: (Background in red)

Status and Prospects for K_{e4}^+ :

- Expect more than half a million events in total 2003 data.
- Backgrounds are tiny, systematics should not be dominating.
- Analysis underway, but a lot of work.
 - \implies May have to wait til the end of the year.

Measurement of $K^{\pm} \rightarrow \pi^{\pm} e^+ e^-$ and $K^{\pm} \rightarrow \pi^{\pm} \mu^+ \mu^-$

Physics interest:

- FCNC, suppressed by GIM mechanism.
- Amplitude dominated by long-distance contributions (one-photon "bremsstrahlung" diagrams).
 - \implies Can be extracted from form factor measurements!
- Potentially interesting channels for CP violation between $\Gamma(K_{\pi ll}^+)$ and $\Gamma(K_{\pi ll}^-)$.

Previous measurements:

■ $K^{\pm} \rightarrow \pi^{\pm} e^+ e^-$: BNL E865 found 10500 events \implies Br = $(2.94 \pm 0.05 \pm 0.14) \times 10^{-7}$ (Also form factor measurement.) ■ $K^{\pm} \rightarrow \pi^{\pm} \mu^+ \mu^-$: Several experiments, in total 800 events. \implies Br = $(0.81 \pm 0.14) \times 10^{-7}$

About 2600 candidates for $m_{ee} > 140 \text{ MeV}/c^2$ in one month of data taking.

Background very small ($\sim 1 - 2\%$).

Status and Prospects:

- Statistical error on branching fraction $\Delta Br \leq \pm 0.06 \times 10^{-7}$. (Total PDG error now is $\pm 0.13 \times 10^{-7}$)
- Systematics expected to be small.
- Analysis far advanced.
 - \implies Expect result within the next months.

Measurement of $K^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$

- Event sample of $> 10^3 K^{\pm} \rightarrow \pi^{\pm} \mu^+ \mu^-$ candidates (SS 1–3). (Current world sample: 800 events)
- Again: Very small background.

Measurement of $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$

 K[±] → π[±]γγ: Similar situation as for K_L → π⁰γγ:
 O(p²) ChPT amplitude vanishes.
 O(p⁴) computed (but not exactly known for K[±] → π[±]γγ!) ⇒ Signal mainly has m_{γγ} > 2m_π
 Fit to m_{γγ} distribution: ⇒ Information on O(p⁶)

$K_{\mathsf{L}} \to \pi^0 \gamma \gamma$:

Experimental problem:

Suppression of $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}$ at trigger level.

- \implies Two trigger conditions for $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$ events:
 - **Normal neutral trigger** \rightarrow down-scaled by 80.
 - **High-** $m_{\gamma\gamma}$ " trigger \rightarrow no down-scaling, but no low- $m_{\gamma\gamma}$

Rare K_L Decays

Main goal of NA48/0:

Measurement of $\operatorname{Re}(\epsilon'/\epsilon) = (14.7 \pm 2.2) \times 10^{-4}$.

 \implies Data taking finished in 2001, published in 2002.

- Meanwhile: Several rare decay analyses published. (E.g. $K_{L} \rightarrow \pi^{0} \gamma \gamma$, $K_{L,S} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$, rare K_{S} decays, ...)
- Still some left-overs due to complicated analyses and available man-power.
 - \implies Now being finished!
 - $K_{\rm L} \to \pi^{\pm} \pi^0 e^{\mp} \nu_e \ (K_{e4}^0)$
 - $\blacksquare K_{\mathsf{L}} \to e^+ e^- \gamma$
 - $\blacksquare K_{\mathsf{L}} \to e^+ e^- e^+ e^-$
 - $\blacksquare K_{e3}, K_{\mu3} \implies Mayda Velasco$

Measurement of $K_{L} \rightarrow \pi^{\pm} \pi^{0} e^{\mp} \nu_{e}$ (K_{e4}^{0})

Physics interest: Similar, but not identical, to K_{e4}^+ .

Measurement of branching fraction and form factors allow determination of ChPT parameters as e.g. the coefficient L_3 .

Previous measurements:

E731 (Fermilab, 1993): 729 events (Measured both Br and form factors.)

NA48 2001:

- Two different triggers:
 - Neutral minimum-bias (downscaled by 30)
 - Special K_{e4} trigger (downscaled by 50)
- **Total** K_{e4} sample: 5464 events (bkg contamination only 1.1%)
- ⇒ One order of magnitude more precise than previous measurement!

Measurement of $K_{L} \rightarrow \pi^{\pm} \pi^{0} e^{\mp} \nu_{e}$ (K_{e4}^{0})

Fit of Cabibbo-Maksymowicz variables:

Measurement of $K_{L} \rightarrow \pi^{\pm} \pi^{0} e^{\mp} \nu_{e}$ (K_{e4}^{0})

Results on K_{e4}^0 : (submitted to PLB)

Branching fraction:

 $Br(K_{e4}^0) = (5.21 \pm 0.07_{stat.} \pm 0.09_{syst.}) \times 10^{-5}$

Form factors:

 $\overline{f_s} = 0.052 \pm 0.006_{\text{stat.}} \pm 0.002_{\text{syst.}}$

 $\overline{f_p} = -0.051 \pm 0.011_{\text{stat.}} \pm 0.005_{\text{syst.}}$

 $\lambda_g = 0.087 \pm 0.019_{\text{stat.}} \pm 0.006_{\text{syst.}}$

 $\overline{h} = -0.32 \pm 0.12_{\text{stat.}} \pm 0.05_{\text{syst.}}$

in good agreement with ChPT predictions.

Determination of ChPT coefficient L_3 (from branching ratio):

 $L_3 = (-4.1 \pm 0.2) \times 10^{-3}$

NA48 publication (2000) on 97 data: BMS form factor: $\alpha_{K^*} = 0.36 \pm 0.06$.

- Result in slight contradiction with KTeV measurements on $K_{\rm L} \rightarrow e^+ e^- \gamma$ and $K_{\rm L} \rightarrow \mu^+ \mu^- \gamma$ on a much larger data sample.
 - Now: Using total NA48 data set (97,98,99,2001)
 - About a factor of 9 statistical improvement w.r.t. 97 publication.

Form Factor in $K_{\rm L} \rightarrow e^+ e^- \gamma$

 $K_L \rightarrow e^+e^-e^+e^-$ measurement soon to be finished.

200 events found with expected background of 1%.

Conclusions

Rare K^{\pm} decays:

All measurements with large statistics and low systematics.

Lots of on-going work:

- High precision measurement of K_{e4}^+ .
- Branching fraction and form factors of $K^{\pm} \rightarrow \pi^{\pm} e^+ e^$ and $K^{\pm} \rightarrow \pi^{\pm} \mu^+ \mu^-$.
- Work on $K^+ \rightarrow \pi^+ \gamma \gamma$.

Many more analyses not shown here:

 $K_{\mu4}, K^{\pm} \to \pi^{\pm}\pi^{0}\gamma, K^{\pm} \to \pi^{\pm}\gamma e^{+}e^{-}, K^{\pm} \to l^{\pm}l^{+}l^{-}\nu, \ldots$

■ *K*_L decays:

- Precision measurement on K_{e4}^0 finished.
- Measurements of $K_{\rm L} \rightarrow e^+e^-\gamma$ and $K_{\rm L} \rightarrow e^+e^-e^+e^-$ on whole data set expected to be published in summer.