

CERN, 5th May 2004

Rare Kaon Decays Revisited

Samuel FRIOT

in collaboration with **D. GREYNAT** and **E. de RAFAEL**

arXiv:hep-ph/0404136 submitted to PLB

Motivations

1- New experimental results for the rare decays

$$K_S \longrightarrow \pi^0 e^+ e^- \qquad K_L \longrightarrow \pi^0 \gamma \gamma$$
 [NA48 '03]

Those results permit a

Re-analysis of the CP violating rare decay

 $K_L \longrightarrow \pi^0 e^+ e^-$

2- Computation of the coupling constants of $\mathscr{L}_{em}^{\Delta S=1}$

to leading and next-to-leading orders in Large N_c QCD

 $K_L \longrightarrow \pi^0 e^+ e^-$

CP Violating part

Chiral Lagrangians

The type of interferences is strongly linked to coupling constants of chiral Lagrangians

Precisely to w_1 and w_2 in their combination $\tilde{w} \doteq w_1 - w_2$

In fact the usual chiral electro-weak order p^4 Lagrangian is [EPdeR '87]

$$\begin{aligned} \mathscr{L}_{\Delta S=1,\,\mathrm{em}}^{(4)} &= \frac{-ie}{2f_{\pi}^{2}} G_{8} F^{\mu\nu} \left[w_{1} \operatorname{Tr} \left(Q\lambda_{6-i7} L_{\mu} L_{\nu} \right) + w_{2} \operatorname{Tr} \left(QL_{\mu} \lambda_{6-i7} L_{\nu} \right) \right] + \text{ h.c.} \\ L_{\mu} &= if_{\pi}^{2} U \partial_{\mu} U^{\dagger} \\ \text{and can be rewritten in a Large N_{c} counting as} \\ \mathscr{L}_{\Delta S=1,\,\mathrm{em}}^{(4)} &= -\frac{ie}{6f_{\pi}^{2}} G_{8} F^{\mu\nu} \left\{ \tilde{w} \operatorname{tr} \left(\lambda_{6-i7} L_{\mu} L_{\nu} \right) + 3w_{2} \left(L_{\mu} \right)_{13} \left(L_{\nu} \right)_{21} \right\} + \text{ h.c.} \\ \text{where} & w_{2} \qquad \text{is} \quad \mathcal{O} \left(N_{C} \right) \\ \tilde{w} &= w_{1} - w_{2} \qquad \text{is} \quad \mathcal{O} \left(1 \right) \end{aligned}$$

Phenomenological constraints on this coupling constants via $K^+ \longrightarrow \pi^+ e^+ e^-$ and $K_S \longrightarrow \pi^0 e^+ e^-$

Octet Dominance Hypothesis and Large-N_C Predictions

> Octet Dominance Hypothesis [EPdR 87]: $w_2 = 4L_9$

Large-N_c Predictions :

Through the bosonization of the factorized part of the operator

$$Q_2 = 4 \left(ar{s}_L \gamma^\mu u_L
ight) \left(ar{u}_L \gamma_\mu d_L
ight)$$

matched to our order p^4 chiral Lagrangian we find

$$egin{aligned} g_8 w_2 &= 8L_9 + \mathcal{O}\left(N_C^0
ight) \ g_8 ilde{w} &= 0 + \mathcal{O}\left(N_C^0
ight) \end{aligned}$$

See also [Bruno Prades '93]

Results

Conclusion: $w_S < 0$ in both cases then CONSTRUCTIVE INTERFERENCES

But the sign of w_+ is not clearly predicted: Need for a Large N_c next-to-leading order calculation

Constraints from the $K^+ \longrightarrow \pi^+ e^+ e^-$ form factor

Order
$$p^4$$
: $|f_V(z)| = \left| \frac{G_8}{G_F} \left\{ \frac{1}{3} - w_+ - \frac{1}{60}z - \chi(z) \right\} \right|$

where $\chi(z)$ is the function of the pion chiral loop.

Clearly, the order p^4 is not sufficient

Narrow resonances dynamical framework

Confirmation of results: Octet Dominance [EPdeR '87]

Minimal Narrow resonances Saturation of the Form Factor

$$L_9=rac{F_\pi^2}{2M_
ho^2}$$

$$w_2 = \frac{2F_{\pi}^2}{M_{\rho}^2} \left[1 + \beta \left(\frac{M_{\rho}^2}{M_{K^*}^2} - 1 \right) \right]$$

The form factor is now

$$egin{aligned} |f_V(z)| &= \left|rac{G_8}{G_F} \left\{rac{(4\pi)^2}{3} \left[rac{\mathbf{ ilde W}}{\mathbf{ ilde M}_
ho^2 - M_K^2 z} + 6F_\pi^2 oldsymboleta rac{M_
ho^2 - M_{K^*}^2}{\left(M_
ho^2 - M_K^2 z
ight) \left(M_{K^*}^2 - M_K^2 z
ight)}
ight]
ight. \ &+ rac{1}{6} \ln \left(rac{M_K^2 m_\pi^2}{M_
ho^4}
ight) + rac{1}{3} - rac{1}{60} z - \chi(z)
ight\}
ight| \end{aligned}$$

Fit

$$\tilde{\mathbf{w}} = 0.045(3) \qquad \qquad \mathbf{w}_2 - 4L_9 = -0.019(3)$$
$$\implies \qquad \qquad \mathbf{w}_8 = -2.1(2)$$

Predictions

	Results	Experiments
${ m Br}\left(K^+\longrightarrow\pi^+e^+e^- ight)$	$(3.0 \pm 1.1) \times 10^{-7}$	$(2.88 \pm 0.13) \times 10^{-7}$
Br $(K^+ \longrightarrow \pi^+ \mu^+ \mu^-)$	$(8.7 \pm 2.8) imes 10^{-8}$	$(7.6 \pm 2.1) \times 10^{-8}$
${ m Br}\left(K_S\longrightarrow\pi^0 e^+e^- ight)$	$(7.7 \pm 1.0) imes 10^{-9}$	$(5.8^{+2.8}_{-2.3}\pm0.8) imes10^{-9}$
$\operatorname{Br}\left(K_S \longrightarrow \pi^0 \mu^+ \mu^-\right)$	$(1.7 \pm 0.2) \times 10^{-9}$	$(2.9^{+1.4}_{-1.2}\pm 0.2) imes 10^{-9}$

Prediction for Br $(K_L \longrightarrow \pi^0 e^+ e^-)$ and Outlook

• CP Conserving Part [Buchalla et al. '03]	pprox 0
• CP Direct Violating Part [Buchalla et al. '03]	0.44×10^{-11}
• CP Indirect Violating Part [NA48 '03]	2.31×10^{-11}
 Interference term [this work] 	1.03×10^{-11}

$$\operatorname{Br}\left(\mathbf{K_L} \longrightarrow \pi^{\mathbf{0}} \mathbf{e}^+ \mathbf{e}^-\right) = (\mathbf{3.7} \pm \mathbf{0.4}) \times \mathbf{10^{-11}}$$

AIM

Next-to-leading order calculation in Large-N_C QCD of w_2 and \tilde{w}

In the framework of [Hambye et al. '03]