June 2004

HERA - LHC Workshop DESY, Hamburg, Germany

"AGK cutting rules in perturbative QCD"

- 1. On Regge poles and Regge cuts.
- 2. The AGK cutting rules.
- 3. Switching on colour.

Agustín Sabio Vera* (University of Hamburg)

In collaboration with Jochen Bartels, Henri Kowalski, Michael Lublinsky

^{*}Alexander von Humboldt Fellow

Regge Theory:

Good phenomenological description of high energy particle physics.

Major challenge:

Based on assumptions: do they hold for the fundamental microscopic theory: QCD?

Basics:

Simple meson exchange violates unitarity.

Single exchange in t—channel with spin J. At large s and fixed t:

$$A(s,t) \sim s^J$$

Optical theorem: $\sigma_{
m tot} \sim s^{2J-2}$

If exchanged spin J > 1 violates Froissart bound. Multiplying the problem = solution:

Exchange of family of resonances = Reggeon

$$A(s,t) \sim s^{lpha(t)}$$

Preserve the Froissart bound if $\alpha(0) < 1$.

How does this work:

General properties of S-matrix:

$$a+b \rightarrow c+d$$

Lorentz invariance:

$$s = (p_a + p_b)^2$$
 $t = (p_a - p_c)^2$
Scattering amplitude = $A(s, t)$

• Unitarity: $SS^{\dagger} = S^{\dagger}S = \mathbf{I}$

Optical Theorem : $\sigma_{\text{total}} = \frac{1}{\epsilon} \text{Im} A_{\text{elastic}} (s, t = 0)$

Analyticity:

Analyticity:
$$A_{ab\to cd}(s,t) = \sum_{l=0}^{\infty} (2l+1) a_l(t) P_l\left(1+2\frac{s}{t}\right)$$
 Partial Wave expression

Introduce t-channel complex angular momentum l

$$A(s,l) \sim \int_C dl \sum_{\eta=\pm 1} \frac{\left(\eta + e^{-i\pi l}\right)}{2} \frac{(2l+1)a^{(\eta)}(l,t)}{\sin \pi l} P\left(l,1+2\frac{s}{t}\right)$$

Even/odd-signature partial wave functions $a^{(\eta)}(l,t)$.

Pole with largest real part dominates at high energies ...

In the limit $s \gg |t|$ we have

$$P\left(l, 1+2\frac{s}{t}\right) \to \frac{\Gamma(2l+1)}{\Gamma(l+1)} \left(\frac{s}{2t}\right)^l$$

and we can write

$$A(s,t) \rightarrow rac{\left(\eta + e^{-i\pi\alpha(t)}\right)}{2\sin\pi\alpha(t)} rac{\gamma_{ac}(t)\gamma_{bd}(t)}{\Gamma\left(\alpha(t)\right)} s^{\alpha(t)}$$

When $\alpha(t)$ is a positive integer the amplitude has a pole corresponding to a t-channel exchange of a resonance of spin α .

 $\alpha(t)$ "trajectories" are seen in experiments ...

From the optical theorem we can derive

$$\sigma_{ ext{total}} \sim s^{lpha(0)-1}$$

The Pomeranchuk theorem states that if there is charge exchange σ should decrease with s.

All known meson trajectories have $\alpha(0) < 1$.

BUT experimentally we see that there is a rise in pp and $p\bar{p}$ σ_{total} ...

So the mechanism responsible for this rise must be an exchange with the quantum numbers of the vacuum.

Pomeron exchange.

Its trajectory populated by glueballs?.

Regge Cuts:

Other singularities appearing in the l-plane when several Reggeons are exchanged.

They restore s-channel unitarity.

If n Pomerons with trajectory $\alpha_P=1+\alpha_P't$ are exchanged the amplitude goes like

$$A(s,t) \sim rac{s^{lpha_c(t)}}{\ln^{n-1} s}$$
 a(e,t)~ $\ln(\ell-d)$

with $\alpha_c(t) = n (\alpha_P(0) - 1) + 1 + \frac{\alpha_P'}{n} t$.

At larger |t| the multipomeron exchange is more important.

There is destructive interference between one and two Pomeron exchange.

Two Pomeron cut gives <u>negative</u> contribution to cross section:

$$\sigma_{\mathrm{tot}} \sim A s^{\alpha_P(0)-1} - B \frac{s^{2(\alpha_P(0)-1)}}{\ln s}$$

s-channel picture of one Reggeon:

The unitarity cut of a Regge pole diagram: Signals in Final States:

• Short Range correlations in rapidity. The correlation function exponentially decreases with rapidity difference:

$$\frac{d\sigma}{\sigma^{\mathsf{in}} dy_1 dy_2} - \frac{d\sigma}{\sigma^{\mathsf{in}} dy_1} \frac{d\sigma}{\sigma^{\mathsf{in}} dy_2} \sim e^{-\lambda(y_1 - y_2)}$$

• Multiplicities:

$$\langle n \rangle \sim \ln s$$

following a Poisson distribution.

2. The AGK cutting rules

s-channel picture of two Reggeons:

The unitarity cuts of two Regge pole diagrams:

Abramovsky, Gribov, Kanchely (1974): Relative contributions to the total cross section

'DIFFRACTIVE' 'ABSORPTIVE' 'DOUBLE OUT'
$$\sigma_{\rm a}=-1\sigma_{\rm tot}^{PP},\,\sigma_{\rm b}=4\sigma_{\rm tot}^{PP},\,\sigma_{\rm c}=-2\sigma_{\rm tot}^{PP}$$

 $\sigma_{\mathrm{tot}}^{PP} <$ 0 two Pomeron contribution to σ_{tot} .

Where and how to use them?:

• HERA:

Saturation at low x and small Q^2 ? Can we find a more direct evidence? All models so far are too inclusive: T_2 "sum over multiple exchanges"

Am derstand much parten corregion

Main Goal:

"Open" these saturation models
Investigate Final State properties (Monte Carlo particle production)

How?:

Use AGK for QCD ladders...

2. Switching on colour

Investigate two ladder exchange in DIS:

- Pieces symmetric in (1234) Glove+ Momenta. La Satisfie AGK for hydring.
- · Antisymmetric parts under strety ...
- Proton side Assume 4 gluan carelater has

 the same symmetry structure as the pce co part.

 Pelative weight of the pce (GBU...) Sixed by 5 what

 within a model (GBU...) Sixed by 5 what
- Transport results to the LHC: prediction for multiple scattering.

Multiple jet pair production:

"AGK cutting rules in perturbative QCD"

Conclusions:

- Use our knowledge of the AGK cutting rules in QCD (the colour degree of freedom not straightforward).
- More exclusive test of saturation at HERA.
 For this we need a Monte Carlo in agreement with AGK cutting rules.
- Transport what has been learnt to the LHC, multiple interactions.