Unintegrated gluon densities and saturation in heavy quark production at HERA and LHC

H. Jung, DESY

HERA - LHC, Heavy Quarks WG, DESY, 2 June 2004

- parton evolution separate initial condition
- saturation soft region perturbative region
- measure saturation soft region: HERA pert. region: LHC
- conclusion

Basic idea - k_t factorisation

 $\sigma(ep \to e'q\bar{q}) = \int \frac{dy}{y} d^2 Q \frac{dx_g}{x_g} \int d^2 k_t \hat{\sigma}(\hat{s}, k_t, Q) x_g \mathcal{A}(x_g, k_t, \bar{q})$ with $\int d^2 k_t x_g \mathcal{A}(x_g, k_t, \bar{q}) \simeq x_g G(x_g, Q^2)$

Basic idea - k_t factorisation

Evolution equation – Integral form

integral form: (Ellis, Stirling, Webber: QCD and Collider Physics **)** $\mathcal{A}(x,\bar{q}) = \mathcal{A}(x,q_0)\Delta_s(\bar{q},q_0) + \int \frac{dz}{z} \int \frac{d^2q}{q^2} \cdot \Delta_s(\bar{q},q) \tilde{P}(z,...) \mathcal{A}\left(\frac{x}{z},q\right)$

differential form (DGLAP)

$$\bar{q}^2 \frac{d}{d\bar{q}^2} \frac{x\mathcal{A}(x,\bar{q})}{\Delta_s(\bar{q},Q_0)} = \int dz \, \frac{\tilde{P}(z,\ldots)}{\Delta_s(\bar{q},Q_0)} \, x' \mathcal{A}(x',\bar{q})$$

CCFM equation: small and large \boldsymbol{x}

$$\mathcal{A}(x,k_t,\bar{q}) = \mathcal{A}_0(x,k_t)\Delta_s(\bar{q},Q_0) + \int \frac{dz}{z} \int \frac{d^2q}{\pi q^2} \Theta(\bar{q}-zq) \cdot \Delta_s(\bar{q},zq) \tilde{P}(z,q,k_t) \mathcal{A}\left(\frac{x}{z},k_t',q\right)$$

CCFM Splitting fct: $\tilde{P}(z,q,k_t) = \frac{\bar{\alpha}_s(q(1-z))}{1-z} + \frac{\bar{\alpha}_s(k_t)}{z} \Delta_{ns}(z,q,k_t)$ Sudakov $\Delta_s(a,b)$:probability for no radiation in [a,b]

Un-integrated gluon density

10

J2003 set

 \blacksquare use H1 + ZEUS F_2 data (from

94 and 96-97)

 $\bar{a} = 10 \text{ GeV}$

Effect of initial condition — small k_t - region

$$\mathcal{A}(x, k_t, \bar{q}) = \mathcal{A}_0(x, k_t) \Delta_s(\bar{q}, Q_0) + \int \frac{dz}{z} \frac{d^2q}{q^2} \Delta_s(\bar{q}, zq) \cdot \tilde{P}(z, ...) \mathcal{A}\left(\frac{x}{z}, k'_t, q\right)$$

Effect of initial condition — small k_t - region

Effect of initial condition — small k_t - region

 $\bar{q} = 10 \text{ GeV}$

$$\mathcal{A}(x, k_t, \bar{q}) = \mathcal{A}_0(x, k_t) \Delta_s(\bar{q}, Q_0) + \int \frac{dz}{z} \frac{d^2q}{q^2} \Delta_s(\bar{q}, zq) \cdot \tilde{P}(z, ...) \mathcal{A}\left(\frac{x}{z}, k'_t, q\right)$$

Advantage of uPDF: initial condition clearly seen in small k_t region even at large scales \bar{q}

Effect of intrinsic k_t - small k_t - region

 $\bar{q} = 4 \text{ GeV}$

- $\exp\left(-k_t^2/Q_s^2\right)$
- different choices for Q_s
- matching with evolution
- all describe F_2 with similar $\chi^2 \sim 1$
- large k_t tail of intrinsic k_t
- to be truncated ?

CCFM unintegrated gluon density - integrated -

Saturation: soft (small k_t) region

saturation scale acc. **Golec-Biernat Wüsthoff** $k_{t\ cut} = \left(\frac{x}{x_0}\right)^{-\frac{\lambda}{2}}$ $x_0 = 0.00004$ and $\lambda = 0.28$ fix free parameters !!! at HERA mainly soft region...

Saturation: soft (small k_t) region

saturation scale acc.
Golec-Biernat Wüsthoff $\sqrt{-\frac{\lambda}{2}}$

 $k_{t \ cut} = \left(\frac{x}{x_0}\right)^{-\frac{\lambda}{2}}$

 $x_0=0.00004$ and $\lambda=0.28$

- fix free parameters !!!
- at HERA mainly soft region...
- saturation in initial condition
- in non-perturbative region during evolution with CCFM/BFKL

Saturation in soft (small k_t) region in $c\bar{c}$ at HERA

Saturation: perturbative (medium k_t) region

- during evolution with
 CCFM/BFKL, k_t can become
 smaller Q_s
- recombination, non-linear evolution
- \checkmark which Q_s ?
- fit parameters from HERA !

Saturation: perturbative (medium k_t) region

 $\bar{q} = 10 \text{ GeV}$

- during evolution with
 CCFM/BFKL, kt can become smaller Qs
- recombination, non-linear evolution
- \checkmark which Q_s ?
- fit parameters from HERA !
- strong dependence on Q_s !
- sizeable effects ... visible in u-PDF only...

Perturbative Saturation in $pp ightarrow bar{b}$

Perturbative Saturation in $pp ightarrow bar{b}$

Perturbative Saturation in $pp ightarrow bar{b}$

saturation effects even in central η visible

The Beginning, Not the End

- k_t factorization: the tool for stduy saturation
- study intrinsic k_t distribution
- study soft saturation region at HERA with charm
 only possible with k_t factorization
 coll. factorization NOT applicable
- study perturbative saturation region at LHC
 - \checkmark visible effects at small x
 - forward region at LHC
 - significant effects in cross section
 - rightarrow only estimate in k_t factorization

Be aware of saturation when looking for Higgs