HERA and the LHC workshop

TOTEM: inelastic scattering

Fabrizio Ferro
INFN Genova

http://totem.web.cern.ch/Totem/

Outline

- Inelastic detectors: general considerations, simulation and ongoing studies
- Inelastic scattering: general considerations and studies published in the TDR
- Future plans: a proposal for an Inelastic scattering working group

TOTEM inelastic detectors

- Inelastic detectors
- T1 - CSC Coverage $\sim 3<|\eta|<\sim 5$
- T2 - GEM Coverage $\sim 5<|\eta|<\sim 7$

TOTEM inelastic detectors are trackers which have been designed to discriminate between beam-beam events and background (eg. beam-gas) events by means of the primary vertex reconstruction.

T1

- CSC: trigger (signal from anode wires) and reconstruction of the primary vertex. (5 planes and measurement of 3 coordinates per plane).
- planes 3deg rotated w.r.t. each other to easy pattern recognition

T2

Placed at $\sim 13.5 \mathrm{~m}$ from IP. GEM (Gas Electron Multiplier) technology to cope with the high rates and high radiation doses (see HERA-B, COMPASS).

TMTV Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

T2: single plane

$54(\varphi) \times 22(\eta)=1188$ pads
Pads: $\quad \Delta \eta \times \Delta \varphi=0.06 \times 0.18 \pi$
$\sim 2 \times 2 \mathrm{~mm}^{2}-\sim 7 \times 7 \mathrm{~mm}^{2}$
Strips: 256 (width: $80 \mu \mathrm{~m}$,pitch: $400 \mu \mathrm{~m}$)

Technology developed for COMPASS

Pads with

digital read-out

Circular strips with analogue read-out

T1 and T2: simulation and performance

The simulation of the inelastic detectors is done in the CMS framework (OSCAR). This allows to generate and analyze datasets also for the common CMS/TOTEM physics program.
The simulation is Geant4 based.
~100000 minimum bias, double and single diffractive events have been generated (Pythia).
This allowed to test the reconstruction capability of the telescopes and to estimate the background due to secondary interactions in the beampipe and due to the beamgas events.

T1 and T2: simulation and performance

- Geometrical acceptance
- Pattern recognition
- Track fit
- Vertex fit

Primary vertex resolution is sufficient for discriminating between beam-beam and beam-gas events.

Primary vertex resolution

Charged flux

T1 and T2 will have to withstand a large charged flux.
T1: ~1.5 Hz/cm ${ }^{2}$
T2: > $100 \mathrm{~Hz} / \mathrm{cm}^{2}$ at $\mathrm{L}=10^{28}$

T 1 and T 2 will be able to operate up to $\mathrm{L}=10^{32}$. Probably more for T2.

Example (T2)

- Main aim: find track candidates and evaluate event multiplicity.
- Method: group hits in roads to reduce hit combinations and to simplify track fitting.
- Idea: tracks coming from the interaction point travel with constant η and ϕ (magnetic field off).
- Procedure: project on a $\eta-\phi$ plane the hits of the detector 5 planes.

Measurement of $\sigma_{\text {tot }}$

Measurement of the total cross section with the luminosity independent method using the Optical Theorem.

$$
\left.\begin{array}{c}
\mathrm{L} \sigma_{\text {tot }}^{2}=\frac{16 \pi}{1+\rho^{2}} \times\left.\frac{d N}{d t}\right|_{t=0} \\
\mathrm{~L} \sigma_{\text {tot }}=N_{\text {elasic }}+N_{\text {inelasiti }}
\end{array}\right\} \Rightarrow \sigma_{\text {tot }}=\frac{16 \pi}{1+\rho^{2}} \times \frac{\left.(d N / d t)\right|_{t=0}}{N_{e l}+N_{\text {inel }}}
$$

Measurement of the elastic and inelastic rate with a precision better than 1%.

Inelastic cross section

Event selection:

- trigger from T1 or T2 (double arm o single arm)
- Vertex reconstruction (to eliminate beam-gas bkg.)

Extrapolation for diffractive evesints needed

Pythia generator

Total cross section

$$
\left(\sigma_{\text {inel. }} \sim 80 \mathrm{mb}, \sigma_{\mathrm{el} .} \sim 30 \mathrm{mb}\right)
$$

Losses (mb)

	$\sigma(\mathrm{mb})$	Double arm	Single arm	Uncertainty after extrapolation
Minimum bias	58	0.3	0.06	0.06
2 x single diffractive	14	-	2.5	0.6
Double diffractive	7	2.8	0.3	0.1
Double Pomeron	1	-	-	0.02
Elastic Scattering	30	-	-	0.1
$\Delta \sigma_{\text {tot }} \approx \sqrt{0.008^{2}+0.005^{2}} \approx 0.01$				

CMS/TOTEM

- T1 and T2 will be able to run as "subdetectors" of CMS
- A common CMS/TOTEM physics program on diffraction is going to be defined in details.
- For the first time at a collider large acceptance detector which measures the forward energy flow
- 1 day run at large beta (1540 m) and $\mathrm{L}=10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$: 100 million minimum bias events, including all diffractive processes
- >90\% of all diffractive protons are detected

TTMTM Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

Level-1 Trigger
 $\mathrm{L}=10^{28} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

All the following trigger typologies will need T1/T2.

Double
Pomeron (Photon) Exchange

Elastic Trigger:
Signal: $\quad 500 \mathrm{~Hz}$
Background: 20 Hz
Single Diffractive Trigger:
Signal: 200 Hz
Background: 0.1 Hz

Central Diffractive Trigger:
Signal: $\quad 10 \mathrm{~Hz}$
Background: 2 Hz
Minimum Bias Trigger:
Signal: 1 kHz

io Ferro - HERA and the LHC workshop

Luminosity $2 \cdot 10{ }^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

Data taking for soft diffraction: $20 \mathrm{mb} \longrightarrow 4 \mathrm{kHz} \longrightarrow 4.10^{8}$ events / 1 eff. Day
Double Pomeron : $1 \mathrm{mb} \longrightarrow 2 \cdot 10^{7}$ events / 1 eff. Day
Precise study of soft diffraction phenomena

Luminosity $10^{31} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
Few day runs with $410^{5} \mathrm{~s} \longrightarrow 410{ }^{36} \mathrm{~cm}^{-2} \longrightarrow 4000$ evts / nb
Double Pomeron exchange
High masses order of TeV
$\chi_{c} \longrightarrow 10^{6-7}$ events before decay
$\chi_{b} \longrightarrow 10^{3-4}$ events before decay
Large pt di jets \longrightarrow coplanar dijet with two accompanying protons and nothing else
Single diffraction with high pt jets and leptons
Study of rapidity gaps with identified protons

Proposal for a working group on inelastic scattering

- Main aim: to facilitate the simulation tasks necessary for the physics feasibility studies
- Some issues:
- To complete the implementation, in the CMS software, of the detector digitization and reconstruction tools
- To study in details the capability of the detectors of doing a pointing trigger
- To study how to use elastic and inelastic scattering simulations together
- To study the possibility of identifying rapidity gaps with T2
- To understand how T2 (and T1) can contribute in the study of interesting physics channels (e.g. χ_{c})
- Suggestions are welcome ... foward jets, mini-jets, multiple rap gaps,..

