

1

HERA and the LHC workshop

TOTEM: inelastic scattering

Fabrizio Ferro INFN Genova

http://totem.web.cern.ch/Totem/

Fabrizio Ferro - HERA and the LHC workshop

Outline

- Inelastic detectors: general considerations, simulation and ongoing studies
- Inelastic scattering: general considerations and studies published in the TDR
- Future plans: a proposal for an *Inelastic scattering* working group

TOTEM inelastic detectors

- Inelastic detectors
 - T1 CSC Coverage ~3<| η |<~5
 - T2 GEM Coverage ~5<| η |<~7

TOTEM inelastic detectors are trackers which have been designed to discriminate between beam-beam events and background (eg. beam-gas) events by means of the primary vertex reconstruction.

T1

- CSC: trigger (signal from anode wires) and reconstruction of the primary vertex. (5 planes and measurement of 3 coordinates per plane).
- planes 3deg rotated w.r.t. each other to easy pattern recognition

T2

Placed at ~13.5m from IP. GEM (Gas Electron Multiplier) technology to cope with the high rates and high radiation doses (see HERA-B, COMPASS).

Pads: $\Delta\eta \ x \ \Delta\phi = 0.06 \ x \ 0.18\pi$ ~2x2 mm² - ~7x7 mm²

Strips: 256 (width: 80 μm,pitch: 400 μm)

Technology developed for COMPASS

T2: single plane

T1 and T2: simulation and performance

- The simulation of the inelastic detectors is done in the CMS framework (OSCAR). This allows to generate and analyze datasets also for the common CMS/TOTEM physics program.
- The simulation is Geant4 based.
- ~100000 minimum bias, double and single diffractive events have been generated (Pythia).
- This allowed to test the reconstruction capability of the telescopes and to estimate the background due to **secondary interactions** in the beampipe and due to the **beamgas events**.

T1 and T2: simulation and performance

- Geometrical acceptance
- Pattern recognition
- Track fit
- Vertex fit

Primary vertex resolution is sufficient for discriminating between beam-beam and beam-gas events.

Charged flux

T1 and T2 will have to withstand a large charged flux. T1: \sim 1.5 Hz/cm² T2: >100 Hz/cm² at L=10²⁸

(M.Huhtinen) Int. flux at 500 fb⁻¹ Ch. Hadron $\Phi~(\mathrm{cm^{-2}})$ r (cm) 120 100 80 60 40 20 0 1200 1250 1300 1350 1400 1450 1500 1550 z (cm) 0E+15 3 2E+14 1 0E+14 3 2E+13 1 0E+13 3 2E+12 1 0E+12 3 2E+11 2 3E+10 2.2E+16

T1 and T2 will be able to operate up to $L=10^{32}$. Probably more for T2.

Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC Pattern recognition studies Example (T2) Evt 1: hits in the first plane. Hits in the 1st plane Main aim: find track candidates and evaluate event multiplicity. Method: group hits in *roads* to reduce hit combinations and to -100

-140

-150

-100

- simplify track fitting. Idea: tracks coming from the interaction point travel with constant η and ϕ (magnetic field off).
- Procedure: project on a η - ϕ plane the hits of the detector 5 planes.

100

1038 -0.4717 5.996 0.6005

primaries

primaries

Measurement of σ_{tot}

Measurement of the total cross section with the luminosity independent method using the Optical Theorem.

Measurement of the elastic and inelastic rate with a precision better than 1%.

Inelastic cross section

Event selection:

- trigger from T1 or T2 (*double arm o single arm*)
- Vertex reconstruction (to eliminate beam-gas bkg.)

	Losses	${\rm Double \ arm}$		Single arm	
Lost events	Process	%	mb	%	mb
	Minimum bias	0.5	0.3	< 0.1	< 0.06
	Double Diffractive	39.5	2.8	4.6	0.3
	Single Diffractive	-	-	17.9	2.5

Extrapolation for diffractive events needed

Total cross section

(σ_{inel} .~80mb, σ_{el} .~30mb)

Losses (mb)

	σ(mb)	Double arm	Single arm	Uncertainty after extrapolation
Minimum bias	58	0.3	0.06	0.06
2 x single diffractive	14	-	2.5	0.6
Double diffractive	7	2.8	0.3	0.1
Double Pomeron	1	-	-	0.02
Elastic Scattering	30	-	-	0.1
	$\Delta \sigma_{tot} = 0.00$	$8^2 + 0.005^2$	0.01	

$$\frac{\Delta \sigma_{tot}}{\sigma_{tot}} \approx \sqrt{0.008^2 + 0.005^2} \approx 0.01$$

CMS/TOTEM

- T1 and T2 will be able to run as "subdetectors" of CMS
- A common CMS/TOTEM physics program on diffraction is going to be defined in details.
- For the first time at a collider large acceptance detector which measures the forward energy flow
- 1 day run at large beta (1540m) and L=10²⁹cm⁻²s⁻¹: 100 million minimum bias events, including all diffractive processes
- >90% of all diffractive protons are detected

Fabrizio Ferro - HERA and the LHC workshop

Level-1 Trigger

All the following trigger typologies will need T1/T2.

io Ferro - HERA and the LHC workshop

TOTEM

 $L=10^{28} cm^{-2} s^{-1}$

Luminosity 2-10 ²⁹ cm ⁻² s ⁻¹

Data taking for soft diffraction : 20 mb \rightarrow 4 kHz \rightarrow 4.10 ⁸ events / 1 eff. Day

Double Pomeron : 1 mb \rightarrow 2.10 ⁷ events / 1 eff. Day

Precise study of soft diffraction phenomena

Luminosity 10 ³¹ cm ⁻² s ⁻¹

Few day runs with 4 10 ⁵ s \longrightarrow 4 10 ³⁶ cm ⁻² \longrightarrow 4000 evts / nb

Double Pomeron exchange

High masses order of TeV

 $\chi_c \longrightarrow$ 10 $^{6\text{-7}}$ events before decay

 $\chi_b \longrightarrow 10^{3-4}$ events before decay

Single diffraction with high pt jets and leptons

Study of rapidity gaps with identified protons

TOTEM

Proposal for a working group on inelastic scattering

- Main aim: to facilitate the simulation tasks necessary for the physics feasibility studies
- Some issues:
 - To complete the implementation, in the CMS software, of the detector digitization and reconstruction tools
 - To study in details the capability of the detectors of doing a pointing trigger
 - To study how to use elastic and inelastic scattering simulations together
 - To study the possibility of identifying rapidity gaps with T2
 - To understand how T2 (and T1) can contribute in the study of interesting physics channels (e.g. χ_c)
 - Suggestions are welcome ... foward jets, mini-jets, multiple rap gaps,..

