TOTEM forward measurement:
 leading protons

Politecnico di Bari \& Sezione INFN, Bari, Italy
Institut für Luft- und Kältetechnik, Dresden, Germany

CERN, Geneva, Switzerland
Università di Genova \& Sezione INFN, Genova, Italy

University of Helsinki \& HIP, Helsinki, Finland

Academy of Sciences, Praha, Czech
Republic
Brunel University, Uxbridge, UK
K. Österberg,

High Energy Physics Division, Department of Physical Sciences, University of Helsinki \& Helsinki Institute of Physics

on behalf of the
TOTEM Collaboration
http://totem.web.cern.ch/Totem/
- $\sigma_{\text {tot }}$ (not covered in this talk)
- elastic scattering
- diffraction (together with CMS)

TMTWN Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

Experimental apparatus

CMS + TOTEM acceptance

CMS+TOTEM: largest acceptance detector ever built at a hadron collider

TOTEM Trigger \& DAQ are CMS-compatible (RP's up to 220 m within CMS L1 trigger latency)

Elastic scattering: cross section

TOTEM beam optics

For $\sigma_{\text {tot }}$ need to measure elastic scattering at very small $\mathbf{t}\left(\sim \mathbf{1 0}^{-3}\right) \Rightarrow$ measure scattering angles down to a few mrad.

Proton trajectory:

$y(s)=L_{y}(s) \theta_{y}{ }^{*}+v_{y}(s) y^{*}, \quad L(s)=\left[\beta(s) \times \beta^{*}\right]^{1 / 2} \sin \mu(s)$
$x(s)=L_{x}(s) \theta_{x}^{*}+v_{x}(s) x^{*}+D_{x}(s) \xi, \quad v(s)=\left[\beta(s) / \beta^{*}\right]^{1 / 2} \cos \mu(s)$

- Maximise $L_{x}(s), L_{y}(s)$ at RP location
- Minimise $v_{x}(s), v_{y}(s)$ at RP location (parallel-to-point focussing: $v=0$)
\Rightarrow High- β^{*} optics: for TOTEM $\beta^{*}=1540 \mathrm{~m}\left(\mathrm{v}_{x} \approx 0, v_{y} \approx 0\right.$ at 220 m$)$
Consequences:
- low angular spread at IP: $\sigma\left(\theta_{x, y}^{*}\right)=\sqrt{\varepsilon / \beta^{*}} \approx 0.3 \mu \mathrm{rad}$
- large beam size at IP: $\quad \sigma_{x, y}^{*}=\sqrt{\varepsilon \beta^{*}} \approx 0.4 \mathrm{~mm} \quad$ (if $\varepsilon_{\mathrm{N}}=1 \mu \mathrm{~m} \mathrm{rad}$)
\Rightarrow Reduced \# of bunches (43 \& 156) to avoid parasitical interactions downstream.

$$
\mathcal{L}_{\text {тотем }}=1.6 \times 10^{28} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \& 2.4 \times 10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
$$

TTVWM Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

Leading protons: t \& ϕ resolution

$\sigma(\dagger) / \dagger$ vs detector resolution

All plots based on LHC6.4 optics using MADX. Beam approach $10 \sigma_{\text {beam }}+0.5 \mathrm{~mm}$. All relevant smearings at IP \& RP locations taken into account. Use ϕ correlation for DPE selection

Test collinearity of protons with 2 arms \Rightarrow Background reduction

Elastic scattering

Region

Coulomb region
Interference, ρ meas.
Pomeron exchange
Diffractive structure Large $|\dagger|$ - perturb. QCD $1 \div 10$
$|t|[G e V]^{2}$
$\leq 5 \times 10^{-4}$
$5 \times 10^{-4} \div 5 \times 10^{-3}$
$5 \times 10^{-3} \div 0.1$
$0.1 \div 1$

Running Scenario

[lower s, RP's closer to beam]
[as above], standard $\beta^{\star}=1540 \mathrm{~m}$
$\beta^{\star}=1540 \mathrm{~m}$
$\beta^{*}=1540 \mathrm{~m}, ~ 200-400 \mathrm{~m}$ (?)
$\beta^{\star}=18 \mathrm{~m}$

TTW Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

Leading proton detectors: Roman pots

Measurement of very small p scattering angles (few $\mu \mathrm{rad}$):
Leading proton detectors in RPs approach beam to $10 \sigma+0.5 \mathrm{~mm} \approx 1.5 \mathrm{~mm}$

Level-1 trigger schemes

Running scenarios

| Scenario (goal) | 1
 low \|t| elastic, $\sigma_{\text {tot }}$, min. bias | 2
 diffr. phys., large p_{T} phen. | | ```intermediate \(\|t|\), hard diffract.``` | $\begin{gathered} 4 \\ \text { large }\|t\| \text { elastic } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| β^{*} [m] | 1540 | 1540 | | 200-400 (?) | 18 |
| N of bunches | 43 | 156 | | 936 | 2808 |
| Half crossing angle [$\mu \mathrm{rad}$] | 0 | 0 | | 100-200 | 160 |
| Transv. norm. emitt. [$\mu \mathrm{m}$ rad] | 1 | 1 | 3.75 | 3.75 | 3.75 |
| N of part. per bunch | 0.3×10^{11} | $\begin{gathered} 0.6 x \\ 10^{11} \end{gathered}$ | $\begin{gathered} 1.15 x \\ 10^{11} \end{gathered}$ | 1.15×10^{11} | 1.15×10^{11} |
| RMS beam size at IP [$\mu \mathrm{m}$] | 454 | 454 | 880 | 317-448 | 95 |
| RMS beam diverg. [$\mu \mathrm{rad}$] | 0.29 | 0.29 | 0.57 | 1.6-1.1 | 5.28 |
| Peak luminos. [$\mathrm{cm}^{-2} \mathrm{~s}^{-1}$] | 1.6×10^{28} | 2.4×10^{29} | | $(1-0.5) \times 10^{31}$ | 3.6×10^{32} |

$\beta^{*}=0.5 \mathrm{~m} \& \mathcal{L}=\left(10^{32} \div 10^{34}\right) \mathrm{cm}^{-2} \mathrm{~s}^{-1}$ not yet part of TOTEM program but under study.

Diffraction at LHC:

pp scattering at highest energy

Soft \& Hard Diffraction

$\xi<0.1 \Rightarrow O(1) \mathrm{TeV}$ "gluon beams"
e.g. Structure of the Pomeron $F\left(\beta, Q^{2}\right)$
β down to $\sim 10^{-3} \& Q^{2} \sim 10^{4} \mathrm{GeV}^{2}$
Diffraction dynamics?
Exclusive final states?
Rapidity gap physics - multigaps!

TMTM Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

Leading protons at high β^{*} : acceptance

Horizontal \& Vertical detectors are complementary:
Horizontal - good acceptance at large ξ
Vertical - good acceptance at small $\xi+$ some \dagger (\& large $\xi+$ larger \dagger)

Leading protons at high β^{*} : acceptance

~ 90\% of all diffractive protons are seen in the Roman Pots Luminosity $10^{28}-10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ (few days or a week)
proton momentum can be measured with a resolution of few 10^{-3}

Prospects for Double Pomeron Exchange

Double Pomeron exchange: cross section

TMTTE Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

Exclusive production by DPE

Advantage: selection rules: $\mathrm{J}^{P C}=0^{++}, 2^{++}, \ldots \Rightarrow$ reduced background, determination of quantum numbers. Good proton ϕ resolution: determine parity: $P=(-1)^{\mathrm{J}} \Leftrightarrow$ $\mathrm{d} \sigma / \mathrm{d} \phi \sim 1+\cos 2 \phi$
Good central mass resolution (via protons for large masses) \Rightarrow further reduction of backgrounds

Measure leading protons accurately with RP detectors using the accelerator as a spectrometer \& impose 4-vector conservation

Experimental signature: 1 leading proton with small momentum loss /side + a central system. Large rapidity gaps between protons \& central system.

TMTN Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

Exclusive production by DPE: examples

Particle	$\sigma_{\text {excl }}$	Decay channel	BR	Rate at $\begin{gathered} 2.4 \times 10^{29} \mathrm{~cm}^{-2} \mathbf{s}^{-1} \\ \beta^{*}=1540 \mathrm{~m} \end{gathered}$ (no acceptance /	Rate at $\begin{aligned} & 10^{31} \mathrm{~cm}^{-2} \mathbf{s}^{-1} \\ & \beta^{*}=200-400 \mathrm{~m} \\ & \text { alysis cuts) } \end{aligned}$
$\begin{aligned} & x_{\mathrm{co}} \\ & (3.4 \mathrm{GeV}) \end{aligned}$	$3 \mu \mathrm{~b}$ [KMRS]	$\begin{aligned} & \gamma \mathrm{J} / \psi \rightarrow \gamma \mu^{+} \mu^{-} \\ & \pi^{+} \pi^{-} \mathbf{K}^{+} \mathbf{K}^{-} \end{aligned}$	$\begin{aligned} & 6 \times 10^{-4} \\ & 0.018 \end{aligned}$	$\begin{aligned} & 1.5 / \mathrm{h} \\ & 46 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 62 / h \\ & 1900 / h \end{aligned}$
$\begin{aligned} & x_{\mathrm{bo}} \\ & (9.9 \mathrm{GeV}) \end{aligned}$	4 nb [KMRS]	$\gamma \mathrm{Y} \rightarrow \gamma \mu^{+} \mu^{-}$	10^{-3} ?	0.08 / d	3.5 / d
(120 GeV)	$0.1 \div 10 \mathrm{fb}$ assume 3 fb	bb	0.68	$0.02 / y$	$1 / \mathrm{y}$

Higgs needs $\mathcal{L} \sim 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$, i.e. $\beta^{*}=0.5 \mathrm{~m}$:

- modify optics locally (increase dispersion at 220 m),
- move detectors closer to the beam (if possible),
- install additional Roman Pots in cryogenic region of LHC (further from IP)

Running scenario examples

Luminosity $2 \cdot 10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
Data taking for soft diffraction : $20 \mathrm{mb} \longrightarrow 4 \mathrm{kHz} \longrightarrow 4 \cdot 10^{8}$ events / 1 eff. Day
Double Pomeron : $1 \mathrm{mb} \longrightarrow 2 \cdot 10^{7}$ events / 1 eff. Day
Precise study of soft diffraction phenomena
Luminosity $10^{31} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
A one week run (4 $\left.10^{5} \mathrm{~s}\right) \longrightarrow 410^{36} \mathrm{~cm}^{-2} \longrightarrow 4000$ evts / nb
Double Pomeron exchange
High masses order of TeV
$\chi_{c} \longrightarrow 10^{6-7}$ events before decay
$\chi_{b} \longrightarrow 10^{3-4}$ events before decay
Large pt di jets \longrightarrow coplanar dijet pair with only 2 accompanying protons
Single diffraction with high pt jets and leptons
Study of rapidity gaps with identified protons

TMTM Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

Leading proton physics with TOTEM: high \& intermediate β^{*}

Standalone running:

- $\sigma_{\text {tot }}$ with 1% uncertainty
$\rightarrow \beta^{\star}=1540 \mathrm{~m}$
- elastic scattering d $\sigma / \mathrm{d} t$ for $10^{-3} \mathrm{GeV}^{2}<t<10 \mathrm{GeV}^{2}$
$\rightarrow \beta^{\star}=1540 \mathrm{~m} \& \beta^{\star}=18 \mathrm{~m}$
Common running with CMS:
- precise study of soft diffraction ($\sim 90 \%$ of diffractive protons measured)
$\rightarrow \beta^{\star}=1540 \mathrm{~m}$
- study of hard diffraction \& exclusive DPE
$\rightarrow \beta^{\star}=200-400 \mathrm{~m}$
TOTEM TDR submitted to LHCC 01/2004 LHCC 2004-002/TOTEM TDR 1
Common CMS/TOTEM physics TDR to be submitted early 2005

Leading proton studies at low β^{*}

Main motivation: DPE \& exclusive new particle production

- $\mathrm{L}>$ few $\cdot 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ for cross sections of $\sim \mathrm{fb}$ (like Higgs)
- measure both protons to reduce background from non-exclusive
- measure final state in central detector to reduce gg background

Challenges:

- M ~ $100 \mathrm{GeV} \Rightarrow$ need acceptance down to ξ 's of a few \%
- pileup events destroy rapidity gaps $\Rightarrow L<$ few $\cdot 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- sufficently good mass resolution from protons only to overcome reduced cross section w.r.t. standard channels

A study made by the Helsinki group in TOTEM.

Dispersion function - low β^{*} optics (CMS IR)

Studied proton detector locations

Leading proton acceptance \& resolution studies

- pp $\rightarrow \mathrm{p}+\mathrm{X}+\mathrm{p}$ simulated using PHOJET1.12
- Protons tracked through LHC6. 2 optics using MAD8

Simulated experimental leading proton uncertainties:

- Initial conditions at interaction point
- Transverse vertex position ($\sigma_{x, y}=16 \mu \mathrm{~m}$)
- Beam energy spread ($\sigma_{E}=10^{-4}$)
- Beam divergence ($\sigma_{\theta}=30 \mu \mathrm{rad}$)
- Conditions at detector location
- Position resolution of detector ($\sigma_{x, y}=10 \mu \mathrm{~m}$)
- Resolution of beam position determination ($\sigma_{x, y}=5 \mu \mathrm{~m}$)

Also systematic offsets at detector locations has been studied.

TMTWN Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

Leading proton acceptance

Mass acceptance central system

both protons seen with ~ 45 \% efficiency at a mass of 120 GeV
acceptance still at masses around 60 GeV
(caveat: PHOJET
limits ξ to 0.25 so acceptances somewhat overestimated)

Momentum loss resolution at 420 m

Resolution improves with increasing momentum loss

Dominant source: transverse vertex position (at small momentum loss) and beam energy spread (at large momentum loss, $420 \mathrm{~m}) /$ detector resolution (at large momentum loss, 215 m \& 308/338 m)

Mass resolution of central system

TMTN Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

Triggering diffractive events at low β^{*}

Constraints on triggering diffractive events:

- At level 1 leading proton info available only from detectors < 220 m from IP (CMS trigger latency, ATLAS worse!!) + asymmetric events have bad mass resolution \Rightarrow for new particle masses $\leq \sim 180 \mathrm{GeV}$, level 1 trigger must be based on central detector info only !!
- Level 1 trigger based on calorimetry \& muon chambers only.
- E_{T} threshold of inclusive jet trigger is too high to be useful.
- Pileup will destroy some rapidity gaps ($\sim 2(20)$ inelastic events at $\left.10^{33}\left(10^{34}\right) \mathrm{cm}^{-2} \mathrm{~s}^{-1}\right)+$ cause accidental 2 leading proton events (SD+SD)
- Allowed level 1 trigger rate for a special diffractive new particle trigger could be $\sim 500 \mathrm{~Hz}$ (?)(out of 100 kHz , no prescaling!!)
MinBias ($E_{\top}>30 \mathrm{GeV}$) $\sim 0.22 \mathrm{mb} \Rightarrow 10^{3} / 10^{4}$ suppression at $1033 / 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
Case study for a 120 GeV Higgs using topological variables (forward E_{T}, jet E_{T} 's, η 's \& ϕ-angles) of the 2 -jet final state with a "CMS-like" L1 calorimetry trigger.

Preliminary results on L1 triggering of a 120 GeV Higgs

"High" luminosity ($10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$)
"Low" luminosity ($10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$)

Efficiency includes "usefulness" cuts (protons \& b-jets seen) !!
Will be repeated with complete CMS trigger simulation !!
Improvements should be possible by using also T2 \& CASTOR !!

Leading proton studies at low β^{*}

For sufficient acceptance for $\mathrm{M} \leq 200 \mathrm{GeV}$

- increase dispersion locally \& use currently planned Roman pots
- no L1 problem anymore
- technical feasibility \& performances unstudied
- install additional Roman pots in the cryogenic region of LHC
- ~1 \% mass resolution obtainable for symmetric events ($\xi_{1} \approx \xi_{2}$)
- feasible L1 triggering scheme?
- technical feasibility?
- alignment procedure?

Topics for "the tagged protons at LHC" project

- Implementation of leading proton acceptance \& resolution in general simulation frame works (like OSCAR of CMS).
- Focus feasibility studies on $\beta^{*}=0.5 \mathrm{~m}$:

1. increase dispersion locally \& use currently planned Roman pots

- technical feasibility
- once optics exist \Rightarrow performance studies

2. additional Roman pots in the cryogenic region of LHC

- L1 triggering scheme
- technical feasibility
- alignment \& stability procedure

3. AOA
\Rightarrow the significance of some specific exclusive DPE processes
(e.g. 120 GeV Higgs) for some initial LHC luminosity (e.g. $30 \mathrm{fb}^{-1}$)

TMTM Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC
High β optics: lattice functions

$$
\begin{aligned}
& \mathbf{v}=\left(\beta / \beta^{*}\right)^{1 / 2} \cos \mu(\mathbf{s}) \\
& \mathbf{L}=\left(\beta \beta^{*}\right)^{1 / 2} \sin \mu(\mathbf{s})
\end{aligned}
$$

Leading proton detectors: sensors

Need full efficiency as close to sensor edge as possible; adequate resolution $\sim 20 \mu \mathrm{~m}$

3D Si Detectors:

Electrodes processed through the bulk. The edge is itself an electrode.
 guard structure (only $\sim 70 \mu \mathrm{~m}$):

TTMN Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC
Diffraction at high β^{*} : Acceptance

$\mathbf{9 9 0 \%}$ of all diffractive protons are seen in the Roman Pots Luminosity ${ }^{10^{28}-10^{30} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \text { (few days or weeks) }}$
proton momentum can be measured with a resolution of few 10^{-3}

TMTMN Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

Leading protons at high β^{*} : acceptance

Horizontal \& Vertical detectors are complementary:
Horizontal - good acceptance at large ξ
Vertical - good acceptance at small $\xi+$ some t (\& large $\xi+$ larger t)

X

LHC: due to the high energy small values of Bjorken-x For rapidities above 5 and masses below 10 GeV $\Rightarrow x$ down to $10^{-6} \div 10^{-7}$
Possible with T2 in TOTEM (calorimeter, tracker): $5<\eta<6.7$

Proton structure at low-x:
Parton saturation effects?

$$
\frac{\alpha_{s}}{Q^{2}} x g\left(x, Q^{2}\right)>\pi R^{2}
$$

Saturation or growing proton?

Mass acceptance central system

Combined acceptance of

- all locations (dotted)
- 420 m + 220 m (dashed)
- 220 m alone (solid)
- 420 m alone (dash-dotted)

Level 1 Trigger Case Study for a 120 GeV Higgs

- $\mathrm{pp} \rightarrow \mathrm{p}+\mathrm{H}(\rightarrow \mathrm{bb})+\mathrm{p}$ kinematics simulated using PHOJET1.12 (PYTHIA 6.205)
- Background sample from PYTHIA
(Dijets with hard scattering $\mathrm{p}_{\mathrm{T}}>30 \mathrm{GeV}$ with $\sigma=0.18 \mathrm{mb}$)
- Superposition of MinBias events
- Simplified CMS Level 1 calorimeter trigger simulation \Rightarrow granularity (calo regions), E_{T} smearing, lost particle rejection \Rightarrow calo region based jet reconstruction with $\min E_{T}=35 \mathrm{GeV}$.
- "Usefulness" cuts (protons \& b-quarks seen) on signal ($\varepsilon \sim 45 \%$)
- Signal characteristics: 2 jets of same E_{T} back-to-back in phi + forward rapidity gaps
No validation yet against official CMS level 1 trigger simulation

Efficiency Budget - Diffractive Higgs Events

Exclusive diffractive Higgs events ($M_{H}=120 \mathrm{GeV}$)

- Both protons within acceptance of proton taggers (~ 45%)
- Both b-jets within Tracker acceptance ($|\eta|<2.5$) (~ 85%)
(need b-tag to reduce gg background)
- $\mathrm{Br}(\mathrm{H} \rightarrow \mathrm{bb})$
- Efficiency of b-tagging, ε_{b}
- Level 1 trigger efficiency at $10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
(~ 35% ?)
Total exclusive diffractive Higgs efficiency:
(~5.5\%?)

Improvements possible?: b-tag efficiency \& Level 1 trigger efficiency (include other trigger detectors: T2, CASTOR ...)

