

Politecnico di Bari & Sezione INFN, Bari, Italy

Institut für Luft- und Kältetechnik, Dresden, Germany

CERN, Geneva, Switzerland

<u>Università di Genova & Sezione INFN,</u> Genova, Italy

University of Helsinki & HIP, Helsinki, Finland

<u>Academy of Sciences</u>, Praha, Czech Republic

Brunel University, Uxbridge, UK

TOTEM forward measurement: leading protons

K. Österberg, High Energy Physics Division, Department of Physical Sciences, University of Helsinki & Helsinki Institute of Physics

on behalf of the **TOTEM Collaboration**

http://totem.web.cern.ch/Totem/

- σ_{tot} (not covered in this talk)
- elastic scattering
- diffraction (together with CMS)

Experimental apparatus

[0]

CMS + TOTEM acceptance

CMS+TOTEM: largest acceptance detector ever built at a hadron collider

TOTEM Trigger & DAQ are CMS-compatible (RP's up to 220 m within CMS L1 trigger latency)

Elastic scattering: cross section

TOTEM beam optics

For σ_{tot} need to measure elastic scattering at very small t (~ 10⁻³) \Rightarrow measure scattering angles down to a few mrad.

Proton trajectory:

 $y(s) = L_y(s) \theta_y^* + v_y(s) y^*$, $L(s) = [\beta(s) \times \beta^*]^{1/2} \sin \mu(s)$

 $x(s) = L_x(s) \theta_x^* + v_x(s) x^* + D_x(s) \xi$, $v(s) = [\beta(s) / \beta^*]^{1/2} \cos \mu(s)$

- Maximise $L_x(s)$, $L_y(s)$ at RP location
- Minimise $v_x(s)$, $v_y(s)$ at RP location (parallel-to-point focussing: v=0)

 \Rightarrow High- β^* optics: for TOTEM β^* = 1540 m (v_x \approx 0, v_y \approx 0 at 220 m)

Consequences:

- low angular spread at IP: $\sigma(\theta^*_{x,y}) = \sqrt{\epsilon / \beta^*} \approx 0.3 \mu rad$ large beam size at IP: $\sigma^*_{x,y} = \sqrt{\epsilon \beta^*} \approx 0.4 \text{ mm}$ (if $\epsilon_N = 1 \mu m rad$)

 \Rightarrow Reduced # of bunches (43 & 156) to avoid parasitical interactions downstream.

$$\mathcal{L}_{\text{TOTEM}} = 1.6 \text{ x } 10^{28} \text{ cm}^{-2} \text{ s}^{-1} \text{ \& } 2.4 \text{ x } 10^{29} \text{ cm}^{-2} \text{ s}^{-1}$$

Leading protons: t & ϕ resolution

RM

ϕ resolution vs t

All plots based on LHC6.4 optics using MADX. Beam approach $10\sigma_{beam} + 0.5$ mm. All relevant smearings at IP & RP locations taken into account. Use ϕ correlation for DPE selection

Elastic scattering

Distance to beam [mm]

hadronic

Coulomb

|†| [GeV]² Region Coulomb region $\leq 5 \times 10^{-4}$ Interference, ρ meas. $5 \times 10^{-4} \div 5 \times 10^{-3}$ [as above], standard β^* = 1540 m 5×10⁻³ ÷ 0.1 Pomeron exchange Diffractive structure 0.1 ÷ 1 Large |t| - perturb. QCD 1 ÷ 10

Running Scenario

[lower s, RP's closer to beam] β* = 1540 m $\beta^* = 1540 \text{ m}, 200 - 400 \text{ m}$ (?) β* = **18** m

Leading proton detectors: Roman pots

Measurement of very small p scattering angles (few µrad): Leading proton detectors in RPs approach beam to 10 σ + 0.5 mm \approx 1.5 mm

2004 prototype

Level-1 trigger schemes

Backgrounds under study!

Running scenarios

Scenario	1	2		3	4
(goal)	low t elastic,	diffr. phys.,		intermediate t ,	large t elastic
	$\sigma_{ ext{tot}}$, min. bias	large p _T phen.		hard diffract.	
β [*] [m]	1540	1540		200 – 400 (?)	18
N of bunches	43	156		936	2808
Half crossing angle [µrad]	0	0		100 - 200	160
Transv. norm. emitt. [μm rad]	1	1	3.75	3.75	3.75
N of part. per bunch	0.3 x 10 ¹¹	0.6 x 10 ¹¹	1.15 x 10 ¹¹	1.15 x 10 ¹¹	1.15 x 10 ¹¹
RMS beam size at IP [μm]	454	454	880	317 - 448	95
RMS beam diverg. [µrad]	0.29	0.29	0.57	1.6 - 1.1	5.28
Peak luminos. [cm ⁻² s ⁻¹]	1.6 x 10 ²⁸	2.4 x 10 ²⁹		(1 - 0.5) x 10 ³¹	3.6 x 10 ³²

 $\beta^* = 0.5 \text{ m} \& \mathcal{L} = (10^{32} \div 10^{34}) \text{ cm}^{-2} \text{ s}^{-1}$ not yet part of TOTEM program but under study.

Diffraction at LHC:

pp scattering at highest energy

Soft & Hard Diffraction

 $\xi < 0.1 \implies O(1)$ TeV "gluon beams"

e.g. Structure of the Pomeron $F(\beta,Q^2)$ β down to ~ 10⁻³ & Q² ~10⁴ GeV² Diffraction dynamics? Exclusive final states ?

Rapidity gap physics - multigaps!

Leading protons at high β*: acceptance

Horizontal & Vertical detectors are complementary:

Horizontal – good acceptance at large ξ Vertical – good acceptance at small ξ + some t (& large ξ + larger t)

Leading protons at high β^* : acceptance

IOLEN

~ 90% of all diffractive protons are seen in the Roman Pots Luminosity $10^{28}-10^{29}$ cm⁻²s⁻¹ (few days or a week)

proton momentum can be measured with a resolution of few 10⁻³

Prospects for Double Pomeron Exchange

Double Pomeron exchange: cross section

IOLEM

Exclusive production by DPE

Advantage: selection rules: $J^{PC} = 0^{++}$, 2^{++} ,... \Rightarrow reduced background, determination of quantum numbers. Good proton ϕ resolution: determine parity: $P = (-1)^{J} \Leftrightarrow$ $d\sigma/d\phi \sim 1 + \cos 2\phi$ Good central mass resolution (via protons for large masses) \Rightarrow further reduction of backgrounds

Measure leading protons accurately with RP detectors using the accelerator as a spectrometer & impose 4-vector conservation

Experimental signature: 1 leading proton with small momentum loss /side + a central system. Large rapidity gaps between protons & central system.

Exclusive production by DPE: examples

Particle	σ _{excl}	Decay channel	BR	Rate at 2.4x10 ²⁹ cm ⁻² s ⁻¹ $\beta^* = 1540$ m (no acceptance / an	Rate at 10^{31} cm ⁻² s ⁻¹ $\beta^* = 200-400$ m alysis cuts)
χ _{c0} (3.4 GeV)	3 µb [кмrs]	γ J/ψ → γ μ+μ- π ⁺ π ⁻ K ⁺ K ⁻	6 x 10 ⁻⁴ 0.018	1.5 / h 46 / h	62 / h 1900 / h
χ _{ь0} (9.9 GeV)	4 nb [KMRS]	$\gamma Y \rightarrow \gamma \mu^{+}\mu^{-}$	10-3?	0.08 / d	3.5 / d
H (120 GeV)	0.1 ÷ 10 fb assume 3 fb	bb	0.68	0.02 / y	1 / y

Higgs needs $\mathcal{L} \sim 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$, i.e. $\beta^* = 0.5 \text{ m}$:

TOTEM

- modify optics locally (increase dispersion at 220 m),
- move detectors closer to the beam (if possible),
- install additional Roman Pots in cryogenic region of LHC (further from IP)

Running scenario examples

Luminosity 2.10 ²⁹ cm ⁻² s ⁻¹

Data taking for soft diffraction : 20 mb \rightarrow 4 kHz \rightarrow 4·10 ⁸ events / 1 eff. Day

Double Pomeron : 1 mb \rightarrow 2.10⁷ events / 1 eff. Day

Precise study of soft diffraction phenomena

Luminosity 10³¹ cm⁻² s⁻¹

A one week run (4 10 ⁵ s) \longrightarrow 4 10 ³⁶ cm ⁻² \longrightarrow 4000 evts / nb

Double Pomeron exchange

High masses order of TeV

 $\chi_c \longrightarrow 10^{6-7}$ events before decay

 $\chi_b \longrightarrow 10^{3-4}$ events before decay

Single diffraction with high pt jets and leptons

Study of rapidity gaps with identified protons

Leading proton physics with TOTEM: high & intermediate β*

Standalone running:

- σ_{tot} with 1 % uncertainty $\rightarrow \beta^* = 1540 \text{ m}$
- elastic scattering ds/dt for 10⁻³ GeV² < t < 10 GeV² $\rightarrow \beta^*$ = 1540 m & β^* = 18 m

Common running with CMS:

- precise study of soft diffraction (~ 90 % of diffractive protons measured) $\rightarrow \beta^{\star}$ = 1540 m
- study of hard diffraction & exclusive DPE
- $\rightarrow \beta^*$ = 200-400 m

TOTEM TDR submitted to LHCC 01/2004 LHCC 2004-002/TOTEM TDR 1 Common CMS/TOTEM physics TDR to be submitted early 2005

Leading proton studies at low β^*

Main motivation: DPE & exclusive new particle production

- \mathcal{L} > few $\cdot 10^{32}$ cm⁻² s⁻¹ for cross sections of ~ fb (like Higgs)
- measure both protons to reduce background from non-exclusive
- measure final state in central detector to reduce gg background

Challenges:

- M ~ 100 GeV \Rightarrow need acceptance down to ξ 's of a few ‰
- pileup events destroy rapidity gaps $\Rightarrow L < \text{few} \cdot 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$

 sufficently good mass resolution from protons only to overcome reduced cross section w.r.t. standard channels

A study made by the Helsinki group in TOTEM.

Dispersion function - low β^* **optics** (CMS IR)

Studied proton detector locations

EM

Leading proton acceptance & resolution studies

- $pp \rightarrow p + X + p$ simulated using PHOJET1.12
- Protons tracked through LHC6.2 optics using MAD8

Makin 2003 Life R Simulated experimental leading proton uncertainties:

- Initial conditions at interaction point
 - Transverse vertex position ($\sigma_{x,y}$ = 16 μ m)
 - Beam energy spread ($\sigma_{\rm F}$ = 10⁻⁴)
 - Beam divergence (σ_{θ} = 30 µrad)
- Conditions at detector location
 - Position resolution of detector ($\sigma_{x,y}$ = 10 μ m)
 - Resolution of beam position determination (σ_{xy} = 5 μ m)

Also systematic offsets at detector locations has been studied.

Leading proton acceptance

Mass acceptance central system

both protons seen with ~ 45 % efficiency at a mass of 120 GeV

acceptance still at masses around 60 GeV

(caveat: PHOJET limits ξ to 0.25 so acceptances somewhat overestimated)

Momentum loss resolution at 420 m

Resolution improves with increasing momentum loss Dominant source: transverse vertex position (at small momentum loss) and beam energy spread (at large momentum loss, 420 m)/detector resolution (at large momentum loss, 215 m & 308/338 m)

Mass resolution of central system

Triggering diffractive events at low β^*

Constraints on triggering diffractive events:

• At level 1 leading proton info available only from detectors < 220 m from IP (CMS trigger latency, ATLAS worse!!) + asymmetric events have bad mass resolution \Rightarrow for new particle masses \leq ~ 180 GeV, level 1 trigger must be based on central detector info only !!

- Level 1 trigger based on calorimetry & muon chambers only.
- E_T threshold of inclusive jet trigger is too high to be useful.
- Pileup will destroy some rapidity gaps (~2(20) inelastic events at 10³³(10³⁴) cm⁻² s⁻¹) + cause accidental 2 leading proton events (SD+SD)
- Allowed level 1 trigger rate for a special diffractive new particle trigger could be ~500 Hz (?)(out of 100 kHz, no prescaling!!) MinBias (E_T > 30 GeV) ~ 0.22 mb \Rightarrow 10³/10⁴ suppression at 10³³/10³⁴ cm⁻² s⁻¹

Case study for a 120 GeV Higgs using topological variables (forward E_T , jet E_T 's, η 's & ϕ -angles) of the 2-jet final state with a "CMS-like" L1 calorimetry trigger.

5

40

round ;S -10

-2

-2.25

-2.5

-2.75

3

log₁₀(background rate (Hz)) d) L1 signal efficiency (high luminosity)

Efficiency includes "usefulness" cuts (protons & b-jets seen) !! Will be repeated with complete CMS trigger simulation !! Improvements should be possible by using also T2 & CASTOR !!

;S

-0.95

-1.05

- 1

Feasible!!

4

3

log₁₀(background rate (Hz)) d) L1 signal efficiency (low luminosity)

Leading proton studies at low β^*

For sufficient acceptance for $M \le 200 \text{ GeV}$

- increase dispersion locally & use currently planned Roman pots
 - no L1 problem anymore
 - technical feasibility & performances unstudied
- install additional Roman pots in the cryogenic region of LHC
 - ~1 % mass resolution obtainable for symmetric events ($\xi_1 \approx \xi_2$)
 - feasible L1 triggering scheme?
 - technical feasibility?
 - alignment procedure?

Topics for "the tagged protons at LHC" project

- Implementation of leading proton acceptance & resolution in general simulation frame works (like OSCAR of CMS).
- Focus feasibility studies on $\beta^* = 0.5$ m:
- 1. increase dispersion locally & use currently planned Roman pots
 - technical feasibility
 - once optics exist \Rightarrow performance studies
- 2. additional Roman pots in the cryogenic region of LHC
 - L1 triggering scheme
 - technical feasibility
 - alignment & stability procedure
- 3. AOA

 \Rightarrow the significance of some specific exclusive DPE processes (e.g. 120 GeV Higgs) for some initial LHC luminosity (e.g. 30 fb⁻¹)

High β optics: lattice functions

M

v = $(\beta/\beta^*)^{1/2} \cos \mu(s)$ L = $(\beta\beta^*)^{1/2} \sin \mu(s)$

Leading proton detectors: sensors

Need full efficiency as close to sensor edge as possible; adequate resolution $\sim 20~\mu m$

0.25

0.5 mm Planar Si with reduced current-terminating guard structure (only \sim 70 μ m):

Diffraction at high β^* : Acceptance

>90% of all diffractive protons are seen in the Roman Pots Luminosity 10²⁸-10³⁰cm⁻²s⁻¹ (few days or weeks)

proton momentum can be measured with a resolution of few 10⁻³

Leading protons at high β^* : acceptance

Horizontal & Vertical detectors are complementary:

Horizontal – good acceptance at large ξ Vertical – good acceptance at small ξ + some t (& large ξ + larger t)

LHC: due to the high energy small values of Bjorken-x For rapidities above 5 and masses below 10 GeV \Rightarrow x down to 10⁻⁶ \div 10⁻⁷ Possible with T2 in TOTEM (calorimeter, tracker): 5 < η < 6.7

 $\mathbf{P_t} = \mathbf{x_1} \mathbf{x_2} \mathbf{x_2} \mathbf{x_2} \mathbf{x_2} \mathbf{x_2} \mathbf{x_1} \mathbf{x_2} \mathbf{x_2} \mathbf{x_1} \mathbf{x_2} \mathbf{x_2} \mathbf{x_1} \mathbf{x_2} \mathbf{x_2$

Proton structure at low-x: Parton saturation effects?

$$\frac{\alpha_s}{Q^2} x g(x, Q^2) > \pi R^2$$

Saturation or growing proton?

Mass acceptance central system

Level 1 Trigger Case Study for a 120 GeV Higgs

• pp \rightarrow p + H(\rightarrow bb) + p kinematics simulated using PHOJET1.12 (PYTHIA 6.205)

 Background sample from PYTHIA (Dijets with hard scattering $p_T > 30$ GeV with $\sigma = 0.18$ mb)

Superposition of MinBias events

What: • Simplified CMS Level 1 calorimeter trigger simulation \Rightarrow granularity (calo regions), E_T smearing, lost particle rejection \Rightarrow calo region based jet reconstruction with min E_{T} = 35 GeV.

• "Usefulness" cuts (protons & b-quarks seen) on signal ($\varepsilon \sim 45$ %)

• Signal characteristics: 2 jets of same E_T back-to-back in phi + forward rapidity gaps

No validation yet against official CMS level 1 trigger simulation

Efficiency Budget - Diffractive Higgs Events

Exclusive diffractive Higgs events (M_{H} = 120 GeV)

- Both protons within acceptance of proton taggers (~ 45 %)
- Both b-jets within Tracker acceptance ($|\eta|$ <2.5) (~ 85 %) (need b-tag to reduce gg background)
- Br (H \rightarrow bb) (in SM ~ 68 %)
- Efficiency of b-tagging, ε_b ($\varepsilon_b^2 = (0.77)^2 \sim 60 \%$?)
- Level 1 trigger efficiency at 10^{33} cm⁻² s⁻¹ (~ 35 %?)

Total exclusive diffractive Higgs efficiency: (~ 5.5 %?)

Improvements possible?: b-tag efficiency & Level 1 trigger efficiency (include other trigger detectors: T2, CASTOR ...)