

Overview

Two new analysis ideas:

- An exclusive Monte Carlo.
 - To decide whether exclusive higgs can be seen at the LHC
- A new exclusive jet definition.
 - New processes need new ideas

The EXHUME Monte Carlo

Written with James Monk (also Manchester). EXHUME implements the KMR model.

What can EXHUME do?

- Now:
 - Produce the Higgs at parton level.
 - Decay to $b\bar{b}$ and hadronise (using Pythia).
- Soon:
 - Produce $b\bar{b}$ and gg background.
- A bit after that:
 - Produce the bbg background
 - Allow other decays not just $bar{b}$
- And finally:
 - Hadronise via Herwig (just for fun).

Jet Definitions

Why?

- Analysis of Exclusive Higgs and Backgrounds at the LHC
- Exclusive dijet analysis
 - At the LHC for the exclusive higgs analysis, but also
 - At HERA and the Tevatron too?

How?

• Current Jet Finding done mainly by cones but also by clustering algorithms

Jets by Cones

• Cone defined in rapidity/phi space

 $\Delta R^2 = \Delta \phi^2 + \Delta \eta^2$

- R defines a spatial extent of the jets.
- Certain amount of cone ovelap allowed.

Distribution of Particles within 15 - 20GeV jets

Clusters by KTJet

- All particles, k, and all pairs of particles, kl, are given resolution variables $d_{kB} = 2E_k^2 (1 - \cos \theta_{kB})$
 - $d_{kl} = 2min\left(E_k^2, E_l^2\right)\left(1 \cos\theta_{kl}\right)$
- the d_{kB} are scaled by a factor R^2 .
- Particles are merged into jets by:
 - minimum resoloution, d_{min} , found.
 - if d_{min} is a d_{kl} then these two objects are merged.
 - if d_{min} is a d_{kB} then the object k is defined to be a jet and removed from the list.

Defining Exclusive Jets

- Cone or Cluster.....
 - both have radius like R parameters to define jet extent.
 - both find jets but some particles left out ('out of cone radius').
- Exclusive events defined as (CDF):
 - 2 highest Et jets have a mass 0.8 of the missing mass (from roman pots).

A new Jet Definition for Exclusive Events

- Run KTJet algorithm in e^+e^- mode
 - tagged protons mean all particles belong in the analysis.
- Define
 - a stoppping parameter $y_{cut} = rac{Q_0^2}{E^2}$
 - the particle pair resolution $y_{kl} = rac{d_{kl}}{E^2}$
- Objects merged until the minimum value of y_{kl} is larger than y_{cut}
- All remaining objects declared as jets.

The Analysis

- Exclusive Events generated with EXHUME.
- Double Pomeron Events generated with POMWIG
- What we want: y_{cut} at the onset of 2 jets (y_{32})

Figure 1: Number of jets found with a resolution of $Q_0 = 10$.

So it works - How well?

- Does it work better than the other method of defining exclusive events? Possibly....
- Defining exclusive events this way keeps $\approx 100\%$ of the signal But
- The inclusive background is larger than that found by the cone method.
- Cone algorithm also performing well on unsmeared data.
 However
- When smearing occurs the advantage will be with the new jet definition.
- More on this very soon.....

Summary

- KMR-type exclusive events will soon be available in Monte Carlo format
- Jet Definitions are important in exclusive analysis.