Non-Singlet QCD Analysis of the Structure Function F_2 in 3–Loops

H. BÖTTCHER, DESY ZEUTHEN

OUTLINE:

- Motivation
- QCD Formalism
- World Data
- Error Calculation
- Parton Distributions
- Λ_{QCD} and $\alpha_s(M_Z^2)$
- Moments Comparison: QCD and Lattice
- Conclusion

IN COLLABORATION WITH J. BLÜMLEIN AND A. GUFFANTI

HERA – LHC WORKSHOP DESY HAMBURG, GERMANY, JUNE 1–4, 2004

- We aim at parameterizations of the parton densities and their fully correlated 1σ error bands which are directly applicable to determine 'experimental' errors for other observables in hard scattering processes.
- Having the recently completed NNLO anomalous dimensions available ^(*) a consistent 3–loop analysis of the unpolarized deep inelastic Structure Functions can be carried out.

\implies Precision Tests of QCD

- The present Analysis concentrates on the Non–Singlet evolution only to firstly obtain an accurate as possible picture for the valence quark distributions.
- The aim of the analysis is to determine $\alpha_s(Q^2)$ and the valence quark distributions with Correlated Errors to 3-loop accuracy.
- An NNLO QCD analysis of the structure function $F_2(x,Q^2)$ may allow to reduce the theoretical error in determining $\alpha_s(Q^2)$ to at least the level of the experimental error.
- (*) **Ref.:** S.Moch, J.A.M.Vermaseren and A.Vogt, hep-ph/0403192.

 Comparison of QCD analysis results with results from recent lattice simulations concerning both QCD parameters and low order moments has shown astonishing agreement in the polarized case:

[Ref.: J.Blümlein and H. Böttcher, Nucl. Phys. B636 (2002) 225]

		QCD Lattice		ttice
Δf	n	moment	QCDSF	LHPC/
		at $Q^2 = 4 GeV^2$		SESAM
Δu_v	1	0.926 fixed	0.889(29)	0.860(69)
	2	0.163 ± 0.014	0.198(8)	0.242(22)
	3	0.055 ± 0.006	0.041(9)	0.116(42)
Δd_v	1	-0.341 fixed	-0.236(27)	-0.171(43)
	2	-0.047 ± 0.021	-0.048(3)	-0.029(13)
	3	-0.015 ± 0.009	-0.028(2)	0.001(25)

• With the steadily improving Lattice Simulations a Comparison of the results of the present analysis and the measurement of the lowest Moments for unpolarized valence quark densities may become feasible soon.

QCD Analysis Formalism

• In Mellin-N space the non-singlet parts of the structure function $F_2(N,Q^2)$ are written as

$$F_2^{\pm,\mathrm{V}}(N,Q^2) = \left[1 + C_1(N)a + C_2(N)a^2
ight] f^{\pm,\mathrm{V}}(N,Q^2) \,,$$

where $f^{\pm,V}(N,Q^2)$ stand for the non-singlet (NS) quark combinations.

• The quark combinations to be considered are

$$\Delta^{\pm} = (u \pm \bar{u}) - (d \pm \bar{d})$$
$$V = (u - \bar{u}) + (d - \bar{d})$$

and the non-singlet parts of F_2 are then given by :

$$F_2^{NS} \propto \frac{1}{3}\Delta^+ \propto \frac{1}{3}(u_v - d_v - 2(\bar{d} - \bar{u}))$$

$$F_2^{p,V} \propto \frac{5}{18}V + \frac{1}{6}\Delta^- \propto \frac{4}{9}u_v + \frac{1}{9}d_v$$

$$F_2^{d,V} \propto \frac{5}{18}V \propto \frac{1}{2}(\frac{5}{9}u_v + \frac{5}{9}d_v).$$

QCD Analysis Formalism cont'd

• Solving the evolution equation for $F_2^{\pm,V}$ up to 3-Loops gives

$$\begin{split} F_{2}^{\pm,\mathrm{V}}(Q^{2}) &= F_{2}^{\pm,\mathrm{V}}(Q_{0}^{2}) \left(\frac{a}{a_{0}}\right)^{-P_{0}/\beta_{0}} \\ &\left\{1 - \frac{1}{\beta_{0}}(a - a_{0}) \left[P_{1}^{\pm} - \frac{\beta_{1}}{\beta_{0}}P_{0} - C_{1}\beta_{0}\right] \right. \\ &\left. - \frac{1}{2\beta_{0}} \left(a^{2} - a_{0}^{2}\right) \left[P_{2}^{\pm,\mathrm{V}} - \frac{\beta_{1}}{\beta_{0}}P_{1}^{\pm} \right. \\ &\left. + \left(\frac{\beta_{1}^{2}}{\beta_{0}^{2}} - \frac{\beta_{2}}{\beta_{0}}\right)P_{0} - 2C_{2}\beta_{0} - C_{1}\beta_{1} + C_{1}^{2}\beta_{0}\right] \\ &\left. + \frac{1}{2\beta_{0}^{2}}(a - a_{0})^{2} \left(P_{1}^{\pm} - \frac{\beta_{1}}{\beta_{0}}P_{0} - C_{1}\beta_{0}\right)^{2}\right\}, \end{split}$$

where C_i are the Wilson coefficients $^{(*)}$, P_i the splitting functions, and $a = \alpha_s/4\pi$ with $a_0 = a(Q_0^2)$.

^(*) C_2 : W.L. van Neerven and A.Vogt, Nucl.Phys.**B568**(2000)263.

• The evolution of the parton densities u_v , d_v , and $\overline{d} - \overline{u}$ goes without the Wilson coefficient terms.

Parameterization of the Non-Singlet Part

• Choice of the parameterization of the parton densities at the input scale of $Q_0^2 = 4 \ GeV^2$:

$$xu_v(x, Q_0^2) = A_{u_v} x^{a_u} (1-x)^{b_u} (1-1.108x^{\frac{1}{2}} + 26.283x)$$

$$xd_v(x, Q_0^2) = A_{d_v} x^{a_d} (1-x)^{b_d}$$

$$(1+0.895x^{\frac{1}{2}}+18.179x)$$

and as adopted from MRST: \implies figure [Ref.: Eur.Phys.J.C23(2002)73]

$$\begin{aligned} x(\bar{d}-\bar{u})(x,Q_0^2) &= 1.195x^{1.24}(1-x)^{9.10} \\ (1+14.05x-45.52x^2) \end{aligned}$$

• The normalization constants A_{u_v} and A_{d_v} are fixed by the conservation of the number of valence quarks: $\int_0^1 u_v(x) dx = 2, \int_0^1 d_v(x) dx = 1.$

 \implies Finally 4 parameters are to be determined in the fit: $u_v: a_u, b_u, d_v: a_d, b_d$

and in addition Λ_{QCD} .

Ref.: J. Stirling, 'Phenomenology of Parton Distributions', Talk given at KITP Conference: Collider Physics, Santa Barbara, USA, January - April, 2004. • *R* correction:

 $\mathsf{BCDMS}(R_{QCD}) \Longrightarrow \mathsf{BCDMS}(R_{1998})$ [**Ref**: E143 Collaboration, K.Abe et al., Phys.Lett.**B452**(1999)194.]

• Deuteron Data correction:

Fermi motion and offshell correction [**Ref**: W.Melnitchouk and A.W.Thomas, Phys.Lett.**B377**(1996)11.]

• Kinematic cuts:

 $\begin{array}{l} 0.3 < x < 1.0 \mbox{ for } F_2^p \mbox{ and } F_2^d \\ 0.0 < x < 0.3 \mbox{ for } F_2^{ns} = 2(F_2^p - F_2^d) \\ 4.0 < Q^2 < 30000 \mbox{ } GeV^2 \mbox{, } W^2 > 12.5 \mbox{ } GeV^2 \end{array}$

• Normalization uncertainties:

We allow for a Relative Normalization Shift between the different data sets within the normalization uncertainties quoted by the experiments or assumed accordingly (fitted and then fixed).

The World Data on F_2

Experiment	x	Q^2,GeV^2	F_2	Norm
BCDMS (100)	0.35 – 0.75	11.75 - 75.00	51	1.016
BCDMS (120)	0.35 – 0.75	13.25 – 75.00	59	1.009
BCDMS (200)	0.35 – 0.75	32.50 - 137.50	50	1.012
BCDMS (280)	0.35 – 0.75	43.00 - 230.00	49	1.014
NMC (comb)	0.35 – 0.50	7.00 - 65.00	15	1.003
SLAC (comb)	0.30 – 0.62	7.30 – 21.39	57	1.017
H1 (hQ2)	0.40 – 0.65	200 - 30000	26	1.018
ZEUS (hQ2)	0.40 - 0.65	650 – 30000	15	1.001
proton			322	
BCDMS (120)	0.35 – 0.75	13.25 - 99.00	59	0.987
BCDMS (200)	0.35 – 0.75	32.50 - 137.50	50	0.985
BCDMS (280)	0.35 – 0.75	43.00 - 230.00	49	0.987
NMC (comb)	0.35 – 0.50	7.00 - 65.00	15	0.980
SLAC (comb)	0.30 – 0.62	10.00 - 21.40	59	0.980
deuteron			232	
BCDMS (120)	0.070 - 0.275	8.75 - 43.00	36	1.000
BCDMS (200)	0.070 – 0.275	17.00 - 75.00	29	1.000
BCDMS (280)	0.100 - 0.275	32.50 - 115.50	27	1.000
NMC (comb)	0.013 – 0.275	4.50 - 65.00	88	1.000
SLAC (comb)	0.153 – 0.293	4.18 - 5.50	28	1.000
non-singlet			208	
total			762	

- **CUTS**: 0.3 < x < 1.0 for F_2^p and F_2^d 0.0 < x < 0.3 for $F_2^{ns} = 2(F_2^p - F_2^d)$ $4.0 < Q^2 < 30000 \, GeV^2$, $W^2 > 12.5 \, GeV^2$
- Data points without BCDMS: 303

- ⇒ Problem: Systematic errors are known to be partly correlated.
 - Experimental Errors in this analysis: For all data sets we used the simplest procedure by adding the statistical and total systematic errors in quadrature. Only fits with a Positive Definite Covariance Matrix are accepted to be able to

 \implies calculate the Fully Correlated 1σ Error Bands by Gaussian error propagation.

• χ^2 Expression:

$$\chi^2 = \sum_{i=1}^{n^{exp}} \left[\frac{(N_i - 1)^2}{(\Delta N_i)^2} + \sum_{j=1}^{n^{data}} \frac{(N_i F_{2,j}^{data} - F_{2,j}^{theor})^2}{(\Delta F_{2,j}^{data})^2} \right]$$

Fully Correlated Error Calculation

• The fully correlated 1σ error for the parton density f_q as given by Gaussian error propagation is

$$\sigma(f_q(x)^2) = \sum_{i,j=1}^{n_p} \left(\frac{\partial f_q}{\partial p_i} \frac{\partial f_q}{\partial p_j}\right) \frac{\operatorname{cov}(p_i, p_j)}{\operatorname{cov}(p_i, p_j)} ,$$

where the $\partial f_q / \partial p_i$ are the derivatives of f_q w.r.t. the parameters p_i and the $\operatorname{cov}(p_i, p_j)$ are the elements of the covariance matrix as determined in the fit.

- The derivatives $\partial f_q / \partial p_i$ at the input scale Q_0^2 can be calculated analytically. Their values at Q^2 are given by evolution.
- The derivatives evolved in MELLIN-N space are transformed back to *x*-space and can then be used according to the error propagation formula above.
- \implies As an example the derivative of f(x, a, b) w.r.t. parameter a in MELLIN–N space reads:

Derivatives in MELLIN-N space

The general form of the derivative of the MELLIN moment w.r.t. parameter a for complex values of N is

$$\frac{\partial \mathsf{M}[f(x, a, b)](N)}{\partial a} = A \frac{\partial \overline{\mathsf{M}}}{\partial a} + \overline{\mathsf{M}} \frac{\partial A}{\partial a}$$

with $\overline{\mathbf{M}} = \mathbf{M}/A$ and A the normalization constant.

$$\begin{array}{lll} \frac{\partial \overline{\mathbf{M}}}{\partial a} &= & \{ [\Psi(a-1+N) - \Psi(a+N+b)] \\ && + \gamma \frac{a-1+N}{a+N+b} (\Psi(a+N) - \Psi(a+N+b+1)) \} \\ && B(a-1+N,b+1) \\ && + \rho [\Psi(a-\frac{1}{2}+N) - \Psi(a+\frac{1}{2}+N+b)] \\ && B(a-\frac{1}{2}+N,b+1) \\ \hline && B(a-\frac{1}{2}+N,b+1) \\ \frac{\partial A}{\partial a} &= -AZ_a/X_a = -CZ_a/X_a^2 \\ Z_a &= & [\Psi(a) - \Psi(a+b+1)]B(a,b+1) + \rho [\Psi(a+1/2) \\ && -\Psi(a+\frac{1}{2}+b+1)]B(a+\frac{1}{2},b+1) + \gamma \\ && \times [\Psi(a+1) - \Psi(a+1+b+1)]B(a+1,b+1) \\ X_a &= & B(a,b+1) + \rho B(a+\frac{1}{2},b+1) + \gamma B(a+1,b+1) \\ \end{array}$$

Fit Results

• Parameter values at the input scale $Q_0^2 = 4.0 \, GeV^2$

$$xq_i(x,Q_0^2) = A_i x^{a_i} (1-x)^{b_i} (1+\rho_i x^{\frac{1}{2}} + \gamma_i x)$$

21	a	0.314 ± 0.007	
u_v	u	0.314 ± 0.001	
	b	4.199 ± 0.032	
	ho	-1.108	
	γ	26.283	
d_v	a	0.413 ± 0.047	
	b	6.196 ± 0.332	
	ho	0.895	
	γ	18.179	
$\Lambda^{(4)}_{QCD}$		227 \pm 30 MeV	
$\chi^2/ndf = 652/757 = 0.86$			

• Covariance Matrix at the input scale $Q_0^2 = 4.0 \, GeV^2$

	$\Lambda^{(4)}_{QCD}$	a_{uv}	b_{uv}	$a_{d_{\mathcal{V}}}$	b_{dv}
$\Lambda^{(4)}_{QCD}$	9.27E-4				
a_{uv}	1.09E-4	5.52E-5			
b_{uv}	-1.13E-4	1.63E-4	9.94E-4		
a_{dv}	2.23E-4	-1.40E-5	-4.85E-4	2.18E-3	
b_{dv}	1.25E-3	2.53E-4	-2.83E-3	1.43E-2	1.11E-1

Valence Parton Densities at $Q_0^2 = 4.0 \, GeV^2$

• 4+1 parameter non-singlet fit to F_2 data:

Evolution of the Parton Density $xu_v(x)$

• 4+1 parameter non-singlet fit to F_2 data:

error propagation through the evolution equation.

Evolution of the Parton Density $xd_v(x)$

• 4+1 parameter non-singlet fit to F_2 data:

$F_2^{NS}(x)$ versus Q^2

$F_2^p(x)$ versus Q^2

$F_2^d(x)$ versus Q^2

$\Lambda^{(4)}_{QCD} \Rightarrow \alpha_s(M_Z^2)$

	$\Lambda^{(4)}_{QCD}$, MeV	$\alpha_s(M_Z^2)$
This Fit	227 ± 30	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

 $\Rightarrow \Lambda_{QCD}^{(4)}$ stable against a variation of the Q^2 -cut on the data $(4, 7, 10 \, GeV^2)$.

 \Rightarrow latest world average: 0.1182 ± 0.0027 Ref.: S.Bethke, LL2004, Zinnowitz, April 25-30, 2004

Comparison of $\alpha_s(M_Z^2)$

 \implies This Fit: $\alpha_s(M_Z^2) = 0.1135 \begin{array}{c} +0.0023 \\ -0.0026 \end{array}$ (expt)

 Comparison with other QCD analyses (significant sea and gluon contributions and correlations):

	$lpha_s(M_Z^2)$	expt	theory	model	Ref.
NLO					
CTEQ6	0.1165	± 0.0065			[1]
MRST03	0.1165	± 0.0020	± 0.0030		[2]
A02	0.1171	± 0.0015	± 0.0033		[3]
ZEUS	0.1166	± 0.0049		± 0.0018	[4]
H1	0.1150	± 0.0017	± 0.0050	$+0.0009 \\ -0.0005$	[5]
BCDMS	0.110	± 0.006			[6]
BB (pol)	0.113	±0.004	$+0.009 \\ -0.006$		[7]
NNLO					
MRST03	0.1153	± 0.0020	± 0.0030		[2]
A02	0.1143	± 0.0014	± 0.0009		[3]
SY01(ep)	0.1166	± 0.0013			[8]
$SY01(\nu N)$	0.1153	± 0.0063			[8]

[1]: CTEQ Coll.: J.Pumplin et al., JHEP 0207:012 (2002). [2]: MRST Coll.:
A.D.Martin et al., hep-ph/0307262. [3]: S.Alekhin, hep-ph/0211096. [4]: ZEUS
Coll.: S.Chekanov et al., Phys.Rev.D67 (2003) 012007. [5]: H1 Coll.: C.Adloff
et al., Eur.Phys. C21 (2001) 33. [6]: BCDMS Coll.: A.C.Benvenuti et al.,
Phys.Lett. 237 (1990) 592. [7]: J.Blümlein and H.Böttcher, Nucl.Phys. B636
(2002) 225. [8]: J.Santiago and F.J.Yndurain, Nucl.Phys. B611 (2001) 447.

Comparison of Moments at $Q^2 = 4.0 \, GeV^2$

f	n	This Fit	MRST03	A02
u_v	2	0.289 ± 0.003	0.289	0.304
	3	0.085 ± 0.001	0.084	0.087
	4	0.0324 ± 0.0004	0.032	0.033
d_v	2	0.109 ± 0.004	0.113	0.120
	3	0.025 ± 0.001	0.028	0.028
	4	0.0076 ± 0.0004	0.010	0.010
$u_v - d_v$	2	0.180 ± 0.005	0.176	0.184
	3	0.060 ± 0.001	0.056	0.059
	4	0.0248 ± 0.0006	0.023	0.024

		QCD	Lattice
f	n	This Fit	QCDSF
$u_v - d_v$	2	0.180 ± 0.005	$0.191 \pm 0.012^{*)}$

 $\implies \Gamma_f(Q^2) = \int_0^1 x^{n-1} f(x, Q^2) dx$

Lattice simulation: Scale $\mu^2 = 1/a^2 \sim 4 \, GeV^2$. *) G.Schierholz, private communication.

Summary

- A Non-Singlet QCD Analysis of the Structure Function $F_2(x, Q^2)$ based on the Non-Singlet World Data has been performed to 3-loops.
- The value for $\alpha_s(M_Z^2)$ was determined to be:

 $\alpha_s(M_Z^2)|_{\rm NS} = 0.1135 \ {+0.0023 \atop -0.0026} \ ({\rm EXPT}) \, ,$

COMPATIBLE WITH RESULTS FROM OTHER QCD ANALYSES AND YET WITH THE WORLD AVERAGE.

- CORRELATED ERRORS ON ALL FIT-PARAMETERS WERE DETERMINED AND THEIR PROPAGATION THROUGH THE EVOLUTION EQUATIONS WAS PERFORMED ANALYTICALLY.
- Analyses by other groups are mainly based on combined Singlet and Non-singlet fits and are therefore subject to correlations between the Sea and Gluon parameters.
- We calculated the low moments of the Distributions $u_v, d_v, u_v d_v$ with correlated Errors which may be compared to upcoming Lattice Measurements.