ZEUS Parton Distribution Functions - Addition of Jet Data to ZEUS QCD Fit -

HERA-LHC PDF Working Group 1st-4th June 2004

Claire Gwenlan

Amanda Cooper-Sarkar, Claudia Glasman, Kunihiro Nagano, Thomas Schoerner, Christopher Targett-Adams, Enrico Tassi, Juan Terron

- Introduction
- Putting Jet Data in the Fit
 - Procedure
 - Results
 - Extrapolation to LHC Scales
- Conclusions and Outlook

ZEUS Parton Density Function Parameterisation

• Each parton momentum distribution is parameterised in x at the starting scale $Q_0^2 = 7$ GeV² using an expression of the form:

$$xf(x) = p_1 x^{p_2} (1-x)^{p_3} (1+p_5 x)$$

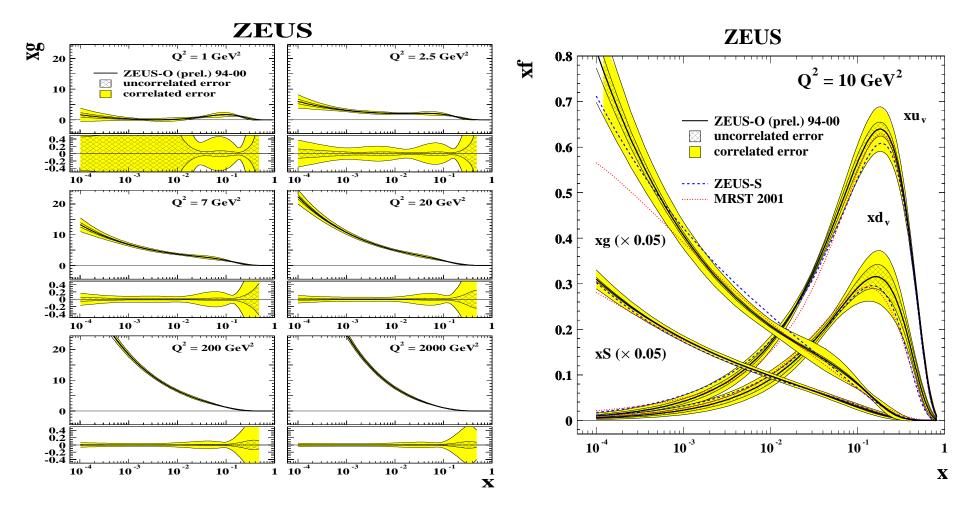
- \rightarrow sensitive to low (p_2) , mid (p_5) and high (p_3) x regions
- Parton densities are evolved in Q^2 using the NLO DGLAP equations, and are convoluted with coefficient functions in the Roberts-Thorne Variable Flavour Number scheme
 - ightarrow List of parameters is fed to an evaluation function which calculates χ^2 based on the data and theory PDFs
- The following distributions are parameterised:

```
\begin{array}{lll} \bullet & u\text{-valence } xu_v(x)\text{:} & p1u,p2u,p3u,p5u \\ \bullet & d\text{-valence } xd_v(x)\text{:} & p1d,p2d,p3d,p5d \\ \bullet & \text{total sea } xS(x) & : & p1S,p2S,p3S,p5S \\ \bullet & \text{gluon } xg(x) & : & p1g,p2g,p3g,p5g \\ \bullet & x\Delta = x(d-\bar{u}) & : & p1\Delta,p2\Delta,p3\Delta,p5\Delta \end{array}
```

 \Rightarrow 4 × 5 = 20 possible free parameters !

Parameter Constraints

Fortunately, some parameters can be fixed ...

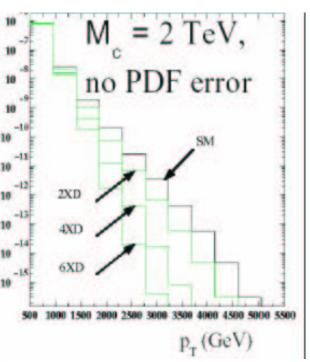

Parameter constraints in latest ZEUS-O (94-00) fit:

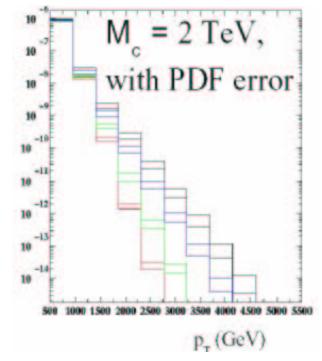
	u_v	d_v	S	g	Δ
p_1	NO. SUM	NO. SUM	FREE	MOM. SUM	FIXED TO ZEUS-S
p_2	FREE	FIX TO p_2u	FREE	FREE	0.5
p_3	FREE	FREE	FREE	FREE	$p_3S + 2$
p_5	FREE	FREE	FIX TO 0	FREE	FIXED TO 0

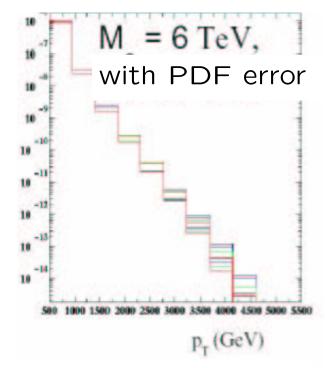
- $\rightarrow p_1u, p_1d$ are fixed through number sum rules and p_1g through momentum sum rule
- $\rightarrow p_2\Delta = 0.5$, $p_3\Delta (= p_3S + 2)$, $p_5\Delta = 0$ as per MRST
- $\rightarrow p_2 u$ is free BUT $p_2 u = p_2 d$ for convergence of fit
- $\rightarrow p_5 S = 0$ (simplifying form of sea) since little information above x > 0.4
- ZEUS-O: 94-00 NC & CC DATA FROM ZEUS ONLY
 - ightarrow Uses some input from the ZEUS global (ZEUS-S) fit $(p_1\Delta)$
 - ightarrow Valence information comes mainly from high Q^2 NC and CC data
 - ightarrow Low-x sea and gluon comes from HERA F_2 data

BUT HIGH-x GLUON IS VERY POORLY CONSTRAINED SINCE INFORMATION COMES ONLY FROM MOMENTUM SUM RULE

How Does This Show In The ZEUS-O Fits?




- Mid-to-high x gluon not well constrained
 - \rightarrow because there is no data directly sensitive to high-x gluon in ZEUS-O fit


Effect of PDF Uncertainties on LHC Predictions

- Large PDF uncertainties (and in particular the gluon) has potentially serious consequences for the LHC
 - → dominant uncertainty in production rates for many processes at LHC

EXAMPLE: Two-jet cross sections at the LHC sensitive to compactification scale of extra dimensions (M_C) :- Ferrag et al.

- Discovery reach reduced from $M_C \sim$ 5 TeV $ightarrow \sim$ 2 TeV
 - ightarrow PDF uncertainty comes mainly from large gluon uncertainty at high-x

What Can We Do?

ADD JET DATA.....

We have added data from two distinct papers (both 1996-1997 data):

• INCLUSIVE JET DEEP INELASTIC SCATTERING (ZEUS Coll., Phys. Lett. B547 (2002) 164)

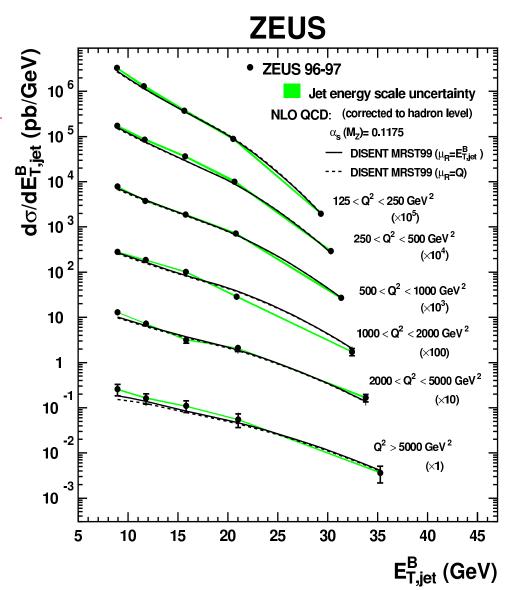
KINEMATIC REGION: $ightarrow Q^2 > 125 \ {
m GeV^2}, \ E_{
m T}^B > 8 \ {
m GeV}, \ -2 < \eta^B < 1.8$

- 9 cross sections available: differential in Q^2 , E_T^B , η^B and double differential in E_T^B in 6 bins of Q^2
- TWO-JET PHOTOPRODUCTION AT HIGH-ET (ZEUS Coll., Eur. Phys. J C23 (2002) 4)

KINEMATIC REGION: $\rightarrow Q^2 < 1~{
m GeV^2}$, $E_{
m T}^{jet1,2} > 14,11~{
m GeV}$, $-1 < \eta^{jet1,2} < 2.4$

• 12 cross sections available: double differential in $E_{\rm T}$ in 6 bins of $\eta^{jet1,2}$ (and for $x_{\gamma}<$ 0.75 and $x_{\gamma}>$ 0.75)

We have made a careful choice of cross sections most suitable for use in the ZEUS QCD fit \longrightarrow

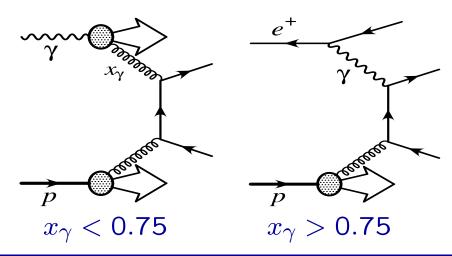

Inclusion of Inclusive DIS Jet Data

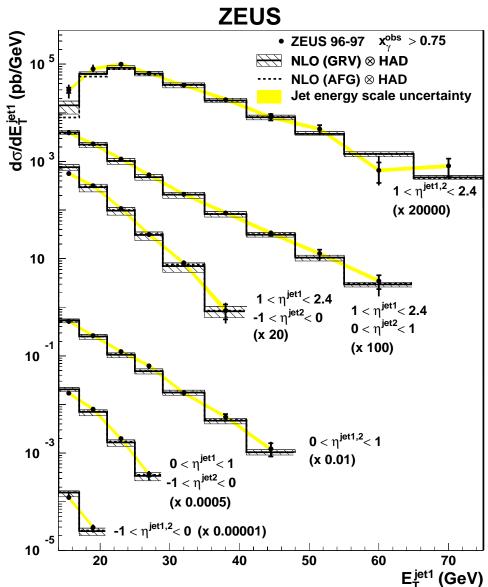
INCLUSIVE JET DEEP
 INELASTIC SCATTERING

(ZEUS Coll., Phys. Lett. B547 (2002) 164)

We have chosen to use only the 6 cross sections differential in E_T^B in bins of Q^2 . This avoids correlations between cross sections with same events

30 NEW DATA POINTS —


Inclusion of Photoproduction Jet Data


 TWO-JET PHOTOPRODUCTION AT HIGH-ET

(ZEUS Coll., Eur. Phys. J C23 (2002) 4)

We have chosen only the 6 cross sections at high x_{γ} (to avoid complications from uncertainty in photon structure)

38 NEW DATA POINTS —

Addition of Jet Data

FIRST STAGE:

- Use NLO program to produce grid (in x, μ_F^2) of weights giving the perturbatively calculable part of cross section
 - \rightarrow Each weight is uniquely identified by x, μ_F^2 and σ bins as well as parton ID

INCLUSIVE DEEP INELASTIC SCATTERING JET DATA

- → NLO PROGRAM: DISENT
 - SCALES: $\mu_R = E_{\mathsf{T}}^{jet}$, $\mu_F = Q$
- \rightarrow Grids are 200 \times 200 in (x,Q^2)

TWO-JET PHOTOPRODUCTION DATA

- → NLO PROGRAM: FRIXIONE-RIDOLFI
 - SCALES: $\mu_R = \mu_F = E_T/2$ where E_T is summed tranverse energy of final state partons
 - PHOTON PDF: AFG-MC PH
- \rightarrow Grids are 200 \times 200 in $(x, (E_T/2)^2)$

GRID Reproduction of the NLO Predictions

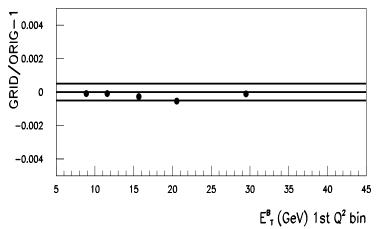
• We placed on ourselves, the requirement that the cross sections from the NLO programs should be reproducible to within $\sim 1\%$

DIS INCLUSIVE JET CROSS SECTIONS

→ All six double differential cross sections are reproducible to within 0.05% !!!

THIS IS A FACTOR OF 20 BETTER THAN WE ORIGINALLY REQUIRED!

Typical example is shown opposite ----


γ p TWO-JET CROSS SECTIONS

ightarrow All high- x_{γ} cross sections reproducible to within $\sim 1\%$ (& usually within 0.5%)

SATISFIES OUR REQUIREMENT

Addition of Jet Data

SECOND STAGE:

 In the QCD fit program, convolute NLO weights with ZEUS PDFs (evaluated using the evolution program QCDNUM) to give predicted cross sections according to:

$$d\sigma_{\text{jet}} = \sum_{a=q,\bar{q},g} \int dx f_a(x,\mu_F^2) d\hat{\sigma}_a(x,\alpha_s(\mu_R),\mu_F^2) \times (1+\delta_{had})$$

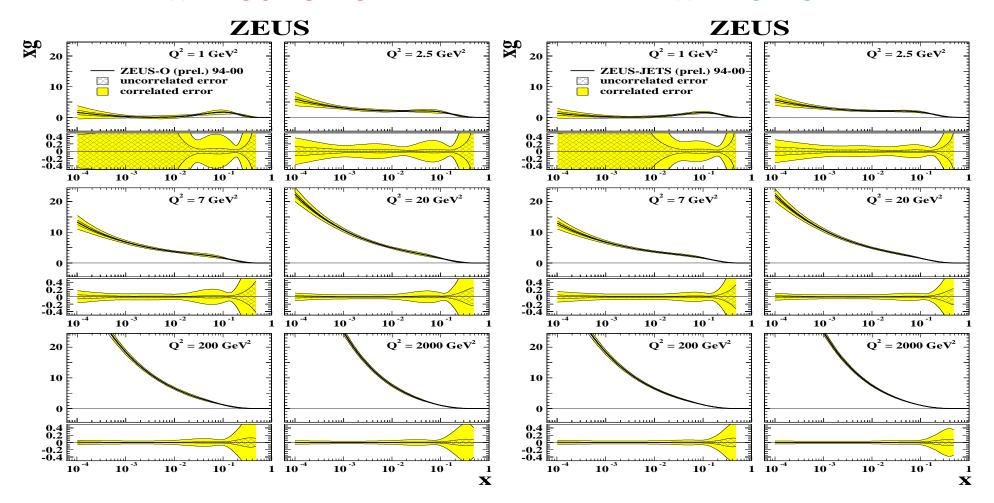
- \rightarrow where $\hat{\sigma}_a(x,\alpha_s(\mu_R),\mu_F^2)$ is the weight
- \rightarrow where $f_a(x,\mu_F^2)$ is the PDF for parton a at x and scale μ_F

NOTE that the parton-level predictions were multiplied by the hadronisation corrections quoted in the relevant papers. The inclusive DIS jet cross sections were also multiplied by correction factors for \mathbb{Z}^0 exchange.

- Add relevant terms to the χ^2
- Treatment of uncertainties (see "correlated systematics" talk):
 - → UNCORRELATED: statistical and uncorrelated systematic
 - → CORRELATED: calorimeter energy scale and luminosity determination

Where Might These Data Have An Impact?

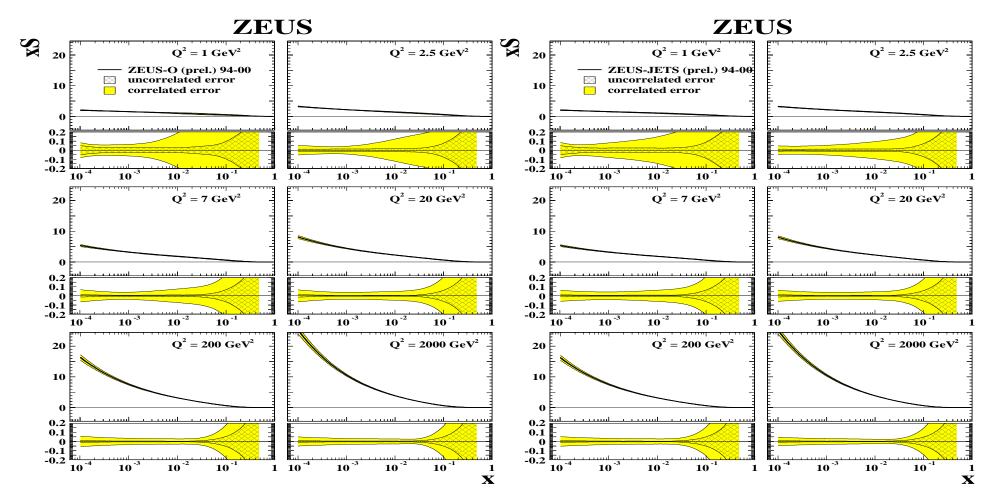
- ullet Both the inclusive jet DIS and the two-jet photoproduction data have Bjorken-x values of $\sim 0.01-0.1$
 - \rightarrow expect some impact on the mid-to-high-x gluon
 - \rightarrow may also expect some impact on the mid-to-high-x sea ?


PARAMETER SUMMARY

	u_v	d_v	S	g	Δ
p_1	NO. SUM	NO. SUM	FREE	MOM. SUM	FIXED TO ZEUS-S
p_2	FREE	$p_2d = p_2u$	FREE	FREE	0.5
p_3	FREE	FREE	FREE	FREE	$p_3S + 2$
p_5	FREE	FREE	FIXED = 0	FREE	FIXED TO 0

Gluon Distribution

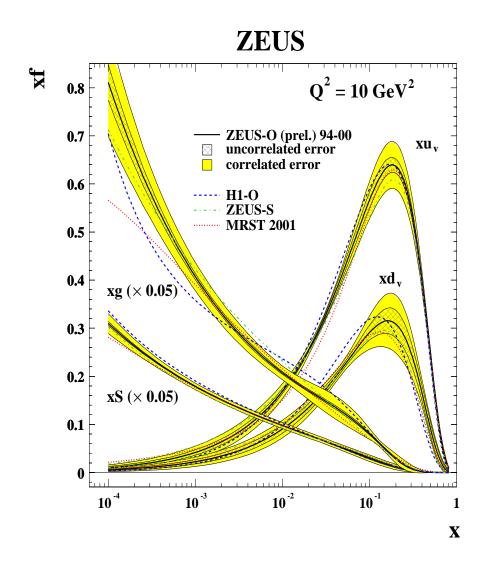
WITH JETS

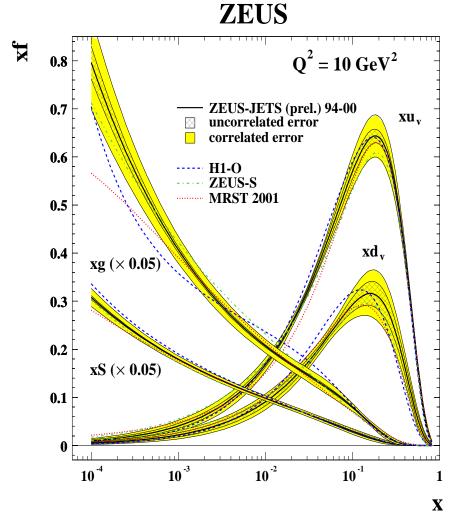


• Significant improvement to constraint on gluon PDF at mid-to-high-x when jet data added!!!

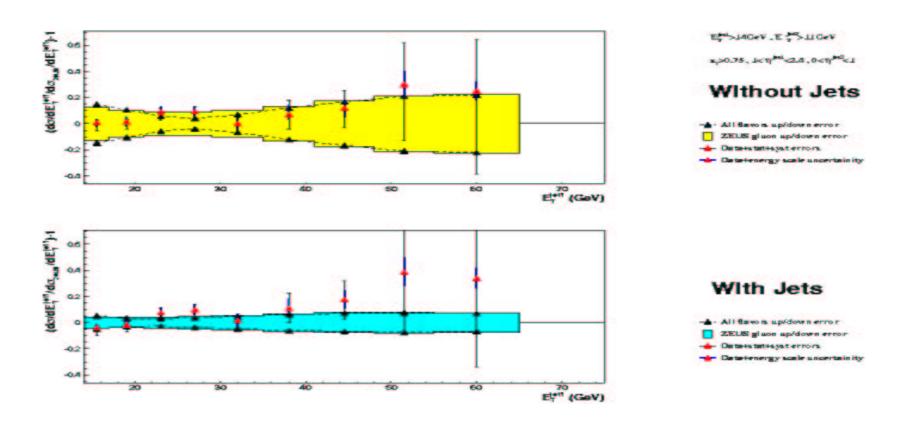
Sea Distribution

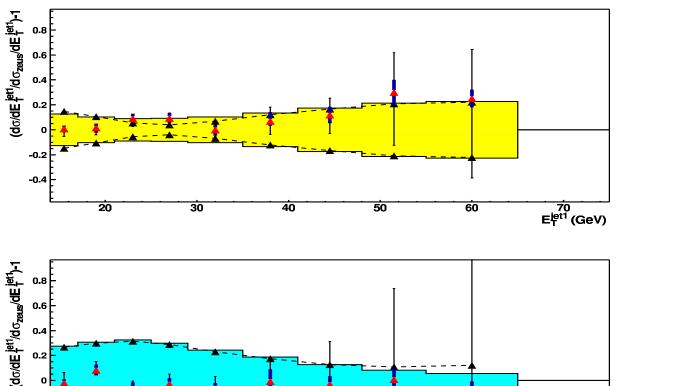
WITH JETS

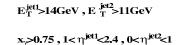



ullet Some effect on the sea distribution also o only really noticeable at low Q^2

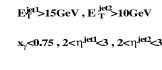
ZEUS Fit - vs MRST/ZEUS-S/H1


WITH JETS


Uncertainty on Cross Section Measurement


EXAMPLE: $1 < \eta^{jet1} < 2.4$, $0 < \eta^{jet2} < 1$, $x_{\gamma} > 0.75$

- Prediction for a typical high- E_T two-jet photoproduction cross section included in the ZEUS-JETS fit, from ZEUS-O and ZEUS-JETS PDFs
 - \rightarrow Reduction in uncertainty on cross section (from gluon PDF) is significant !


Potential for Further Improvement

Published

- -▲ All flavors up/down error
- ZEUS gluon up/down error
- → Data+stat+syst errors
- → Data+energy scale uncertainity

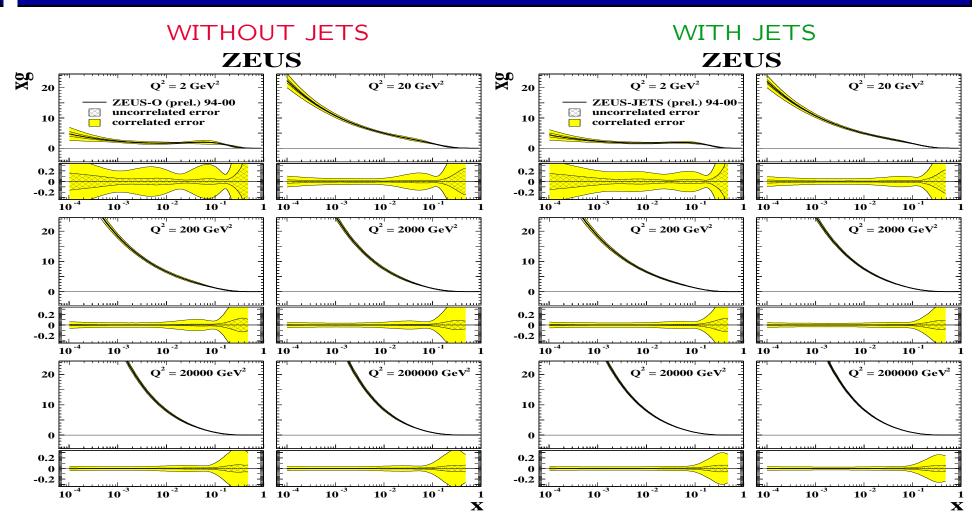
Optimised

- ▲ All flavors up/down error
- ZEUS gluon up/down error
- **★** Data+stat+syst errors (est)
- **★** Data+energy scale uncertainity (est)
- So far, have only used 1996-1997 data ightarrow statistically limited at high- E_T (high-x)

60

50

• With rest of HERA I and HERA II data, potential to measure cross sections where sensitivity to high-x gluon is significant


-0.4

20

30

70 E^{jet1} (GeV)

Extrapolation to LHC Energies

- Uncertainty in high-x (> 0.1) gluon can still be large, even at LHC scales \rightarrow dominant uncertainty in production rates for many processes at LHC
- Addition of HERA jet data provides visible improvement even at LHC energies

Conclusions and Outlook

- Jet data from DIS and γp have been added to the ZEUS QCD fit
 - → This is the <u>first</u> time that jet data has been rigorously added in any QCD fit!
 - \rightarrow The mid-to-high-x gluon is now <u>measured</u> using HERA data, rather than being set only by the momentum sum rule
- Addition of ZEUS jet data constrains high-x gluon significantly (PLUS a visible improvement even at LHC energies)
 - → LHC predictions become less uncertain and things will only get better!!!
- Still many interesting avenues to explore
 - → We still have more HERA I jet data to add
 - → Potential for measurement of optimised cross sections
 - → HERA II DATA !!!
- In principle, this method (modified!) can be used for LHC (and Tevatron!) jet data
 - \rightarrow Inclusion of LHC high- E_T jet data in QCD fits !!!