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C “Conventional method” of calculating the χ2

→ Errors on fit parameters, p, evaluated from ∆χ2 = 1

Correlated Systematic Uncertainties

C THIS IS NOT GOOD ENOUGH if experimental systematic 
uncertainties are correlated between data points
→ e.g. Calorimeter energy scale/angular resolutions can  move events 

between x,Q2 bins, thus changing the shape of exp. distributions

χ2 = ∑i [Fi
QCD(p) – Fi

MEAS]2

(σi
STAT)2+(∆i

SYS)2 

To take into account correlations between data points use: 

χ2 = ∑i ∑j [ Fi
QCD(p) – Fi

MEAS] Vij
-1 [ Fj

QCD(p) – Fj
MEAS]

where the correlation matrix is: Vij = δij(σi
STAT)2 + ∑λ ∆iλ

SYS ∆jλ
SYS

and ∆iλ
SYS is the correlated uncertainty on point i due to 

systematic error source λ
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Correlated Systematic Uncertainties
The general expression for the χ2 can be shown to be equivalent to:

χ2 = ∑i  [ Fi
QCD(p) – ∑λ sλ ∆iλ

SYS – Fi
MEAS]2 + ∑sλ2

→ where the sλ are systematic uncertainty fit parameters (for each 
source of correlated uncertainty λ) of zero mean + unit variance

This has modified fit prediction by each source of 
systematic uncertainty

(σi
STAT)2 + (σi

UNC)2

Two main approaches:

1. OFFSET METHOD :- used by Botje, ZEUS

2. HESSIAN METHOD :- used by H1, CTEQ 
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1. Perform fit without correlated errors (sλ = 0) for central fit
2. Shift measurement to upper limit of one of its systematic 

uncertainties (sλ = +1)
3.   Redo fit, record differences of parameters from those of step 1
4.   Go back to 2, shift measurement to lower limit (sλ = -1)
5.   Go back to 2, repeat 2-4 for next source of systematic uncertainty
6. Add all deviations from central fit in quadrature (positive and 

negative deviations added separately)

This method does not assume that correlated           
systematic uncertainties are Gaussian distributed

The Offset Method
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Define matrices:          Mjk = 1   ∂2χ2 C jλ = 1  ∂2χ2

2 ∂pj∂pk 2 ∂pj∂sλ

→ M is Hessain matrix, evaluated theoretical parameters
→ C is a second Hessian matrix, expressing variation of χ2 with 

theoretical and systematic uncertainty parameters 

C Covariance matrix accounting for statistical errors is Vp = M-1

C Covariance matrix accounting for correlated systematic 
uncertainties is Vps = M-1CCT M-1

C Total covariance matrix is Vtot = Vp + Vps

Fortunately there are clever ways to perform an Offset (style) Method 
without having to perform the whole fit again for every ±1 variation in sλ
→ Pascaud and Zomer LAL-95-05, Botje hep-ph-0110123

Offset Method (as used in ZEUS fit)
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Uncertainties on any distribution, F, which is a function of the
theoretical parameters is:

<σ2
F > = T  ∑j ∑k ∂F  Vjk ∂F

∂pj ∂pk

where V = Vp, Vps, Vtot for the calculation of uncorrelated, correlated or 
total uncertainties respectively and T is the χ2 tolerance (T = 1 for 
OFFSET method)

This is a conservative method which gives predictions as 
close as possible to the central values of the published data
→ It does not use the full statistical power of the fit to improve 

the estimates of sλ, since it chooses to distrust that systematic 
uncertainties are Gaussian distributed

Offset Method (as used in ZEUS fit)
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• In contrast, the Hessian Method allows sλ parameters to vary for 
the central fit
→ total covariance matrix is inverse of single Hessian matrix expressing  

variation of χ2 with both theoretical and syst. uncertainty parameters 
→ theoretical prediction is not simply fitted to central values of  

published experimental data but allows data points to move 
collectively according to correlated systematic uncertainties
C Fit determines optimal settings for correlated systematic shifts so that

most consistent fit to all data sets is obtained                                                       
→ theory is calibrating the detector(s)

BUT
→ Must be confident of theory to trust it for calibration and must be very 

confident of model choices made in setting boundary conditions to theory        

→ Must check that |sλ| values are not >>1, so that data points are not shifted 
far outside their one standard deviation errors - Data inconsistencies!

→ Must check that superficial changes of model choice (values of Q2
0, form 

of parameterisation…) do not result in large changes of sλ

c.f. HESSIAN Method
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where   

Bλ = ∑i ∆iλ
sys [Fi

QCD(p) – Fi
MEAS]   , Aλµ = δλµ + ∑i ∆iλ

sys ∆iµ
sys

C In practice, fitting many sλ parameters can be cumbersome
→ CTEQ have given an analytic method

χ2 = ∑i [ Fi
QCD(p)  – Fi

MEAS]2 - B A-1B

→ contributions to χ2 from statistical and correlated sources can be evaluated separately
C Problem of large systematic shifts to data points becomes manifest 

at large BA-1B (correlated contribution to the χ2)
→ small overall χ2 can be obtained by the cancellation of two large numbers.

What can be done about this?
Could restrict data sets to those which are sufficiently consistent that 
these problems do not arise
→ But lose information since partons need constraints from many different data sets –

no one experiment has sufficient kinematic range / flavour infomation

(σi
STAT)2 + (σi

UNC)2

(σi
STAT)2 + (σi

UNC)2

Hessian Method 2 (as used by CTEQ)

(σi
STAT)2 + (σi

UNC)2
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CTEQ suggest modification of χ2 tolerance (∆χ2 = 1) with which errors 
are evaluated such that ∆χ2 = T2, and T = 10 (for CTEQ fit)
Why? Pragmatism
All of the world’s data sets must be considered acceptable and compatible at 
some level, even if strict statistical criteria are not met (since conditions 
for application of strict statistical criteria, namely Gaussian error  
distributions are also not met)
→ Don’t want to lose constraints on PDFs by excluding data sets BUT the level  

of inconsistency between data sets must be reflected in the uncertainties

Size of tolerance T set by 
considering distances from χ2

minima of individual data sets 
from global minimum for all 
parameters of the fit
N.B. MRST have also set larger  
tolerances (T=5) in recent fits
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Comparison of Methods in ZEUS Fit

Both methods have been tried in the ZEUS fit:                   
→ Hessian Method gives much smaller uncertainties than Offset if T=1                 
→ Comparable size error bands if tolerance is raised to T ~ 7

C similar ball park to CTEQ’s chosen tolerance, T=10
N.B. This makes error band large enough to encompass reasonable variations of 
model choice since criterion for acceptability of alternative hypothesis (or 
model) is that the χ2 lie within N ± √2N, where N is the number of degrees of 
freedom (for the ZEUS global fit √2N=50)

Offset method Hessian method  T=1 Hessian method T=7
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We  trust NLO QCD– but are we sure about every choice which goes 
into setting up the boundary conditions for QCD evolution ?
→ form of parameterisation, starting scale Q0

2, flavour structure of sea etc.

Statistical criterion for parameter error estimation within a   
particular hypothesis is ∆χ2 = T2 = 1. But for judging the acceptability of 
an hypothesis the criterion is that χ2 lie in the range N ±√2N, where N 
is the number of degrees of freedom

There are many choices, such as the form of the parametrization at 
Q2

0, the value of Q0
2 itself, the flavour structure of the sea, etc., which 

might be considered as superficial changes of hypothesis, but the χ2

change for these different hypotheses often exceeds ∆χ2=1, while 
remaining acceptably within the range N ±√2N. 

In this case the model error on the PDF parameters usually exceeds the 
experimental error on the PDF, if this has been evaluated using T=1, 
with the Hessian method. 

Model Uncertainties
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If the experimental errors have been estimated by the Hessian method 
with T=1, then the model errors are usually larger. Use of restricted 
data sets also results in larger model errors. Hence total error (model 
+ experimental) can end up being in the same ball park as the Offset 
Method, (or the Hessian method                                  
with T ~ 7-10).

Comparison of ZEUS (Offset)
and H1 (Hessian, T=1) gluon 
distributions 

Yellow band (total error) of H1 
comparable to red band (total 
error) of ZEUS

Comparison of ZEUS/H1 Model Uncertainties
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Five reasons why ZEUS 
choose to use Offset Method 
as opposed to Hessian Method

1. Alekhin’s plot hep-ph-0011002

2. Compare the conventional 
χ2 evaluated by adding 
systematic and statistical 
uncertainties in quadrature

Hessian T=1

Offset

0.890.95305BCDMS
1.111.33436NMC D+p
0.831.37242ZEUS 96/7

χ2/d.p. 
offset

χ2/d.p. 
hessian

Data 
points

Expt.

Results from the ZEUS-S fit

Hessian Versus Offset Methods
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3. sλ parameters are estimated as 
different for same data set when 
different combinations of 
data/models are used 
→ different calibration of detector   

according to model

4. Estimates of sλ made by Hessian 
method for ZEUS and H1 data pull 
the data points apart- not electronic

5.   Hessian is best used when 
systematic errors are not large 
compared to statistical – Zarnecki, 
not electronic -0.060.2110

0.04-0.409

0.200.628

-1.401.287

0.39-1.076

0.320.005

0.40-0.444

1.20-1.253

1.17-0.672

-0.361.671

ZEUS-fitCTEQ6 fitZEUS sλ

Hessian Versus Offset Methods



15

Extras …
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What is Available?
http:://www-pnp.physics.ox.ac.uk/~cooper/zeus2002.html
or from Durham HEPDATA : http://durpdg.dur.ac.uk/hepdata

1. PDF grids: uv, dv, Sea, Gluon, plus Sea flavour break up into u, d, s, c, b 
and also (new) d/u

2. Structure function grids: F2(e-), FL(em) F2
charm, F2(NC), FL(NC) and 

xF3(NC)
3.      Reduced cross section grids: б(NCe+), б(NCe-), б(CCe+), б(NCe-)
4.      Programme gluon_grid.f to show how to use these grids

5. Central PDF set for ZMVFN/ FFN/ RTVFN heavy flavour schemes -plus 
corresponding eigenvector PDF sets so that you could make all these 
calculations (and more) yourself straight from the PDF parameters 
WITH ERRORS.  

6. These eigenvector sets are available separately for 
a. statistical plus uncorrelated systematic errors, 
b. correlated systematic errors 
c. and total errors. 

7. Programmes gluon.f, qcd_results.f to show you how use eigenvector PDF 
sets

8. Central PDF set plus covariance matrices if you want to do it the hard 
way. These are also available for ZMVFN/ FFN/ RTVFN and 
uncorrelated plus correlated errors as well as total errors
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statistical errors only (ZMVFN scheme)

HERA data: NC 96/7 CC94-97 NC 98/9 CC 98/9

ZEUS only gluon: 
p3 = 5.8 ±4.2   p5 = -0.56 ± 15.

(p2 valence = 0.61 ± 0.14)

H1 only gluon:
p3 = 14.5 ± 0.6   p5 = 48.2 ± 3.6

(p2 valence = 0.89 ± 0.03)

The gluons really are very different even when exactly the same 
analysis is performed
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Combine ZEUS and H1

With statistical plus Offset 
Method correlated errors

Allow free relative normalisations
→ ZEUS 96/7 norm 0.986   
→ H1 96/7norm  1.013

With Offset errors we achieve a 
reasonable compromise – but 
because of data differences/ 
incompatibility(?) the combination 
does not have much smaller 
errors than ZEUS alone
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• Diagonalising the error matrix 
of the fit has various further 
benefits

• It tells you if you have a 
stable fit- are the eigenvalues
all positive?

• It tells you if you NEED all 
the parameters you are using

• It tells you which parameters 
are constrained best

• The errors on the PDF 
parameters are given by the 
error matrices Vij and are 
propagated to quantities of 
interest like parton
distributions, structure 
functions and reduced cross-
sections via 

• ∆F2=∑ij ∂F/∂pi Vij ∂F/∂pj
• This would clearly be easier if V 

were diagonalised

Eigenvector PDF sets- a better way to store the results of the fits
see http://www-pnp.physics.ox.ac.uk/~cooper/zeus2002.html

•The results of the fit are then summarised in one central PDF set and 2 * Npdf
parameter sets for the errors, where Npdf is the number of PDF parameters

These parameter sets are obtained by moving up(+) or down(-) along the i=1,Npdf 
eigenvector directions by the corresponding error.These moves are propagated 
back to the original PDF parameters to create new PDF sets- (Si+) (Si-). The 
error on a derived quantity is then obtained from 

∆F2= ½∑I ( F(Si+) – F(Si-) )

The ZEUS fits are well-behaved. It has been the experience of CTEQ and 
MRST- that along some eigenvector directions the χ2 increases very slowly-
leading to asymmetries and the breakdown of the quadratic approximation for χ2
. ZEUS has avoided this by not assuming that we can determine more parameters 
than we actually can! 
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The form of our parametrisation is
xq(x) = p1 x p2 (1-x) p3 (1+p5x)
Examining the eigenvectors and eigenvalues of the total error matrix of the 
ZEUS-Only (12 param.) and the ZEUS-S (13 param.) fits shows that 
The best determined parameters are p2 for the sea and the gluon –i.e the low 

–x behaviour of the Sea and Glue as determined by the ZEUS data – and the 
next best determined is p1 for the sea. These parameters dominate the first 3 
eigenvectors. A combination of parameters which is 90% p2 Sea and 4% p2 
Glue and 4% p1 Sea, with negligible amounts of the other PDF parameters, is 
BETTER determined than either of these parameters separately. The 
eigenvalues for the ZEUS-S and ZEUS-O fits are fairly similar
p2 for the valence parameters is also moderately well determined, through 

the number sum rules, for both fits
The next best determined parameters are p3 for the u and d-valence –i.e. the 
high-x valence parameters, but the eigenvalues are larger for the ZEUS-O 
than for the ZEUS-S fit, reflecting the fact that the fixed target data is still 
making a more precise measurement. However the 5th and 6th eigenvectors 
are more purely dominated by these parameters for the ZEUS-O fit so that 
statistical improvement should be significant
The remainder of the parameters p3, p5 for the glue and sea, and p5 for the 
valence are very much mixed into the eigenvectors. They are clearly much 
better detrmined in the ZEUS-S fit with fixed target data


